Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Statistical screening of modelling alternatives in train-bridge interaction systems
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges. (Järnvägsgruppen (KTH Railway group))ORCID iD: 0000-0003-2372-5234
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0002-5447-2068
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges. ELU Konsult AB, Sweden.
2014 (English)In: Engineering structures, ISSN 0141-0296, E-ISSN 1873-7323, Vol. 59, 693-701 p.Article in journal (Refereed) Published
Abstract [en]

The effect of parameter variations in railway bridges subjected to train loads has been evaluated within the framework of a two-level factorial experiment. Especially, the influence of train-bridge interaction in comparison to other parameter variations is highlighted. Variations in the system parameters were introduced, corresponding to modelling alternatives considering reasonable uncertainties in a bridge design model. The dynamic effect from a passenger train set has been evaluated at, and away from, resonance in beam bridges of span lengths 6, 12, 24 and 36. m. By means of the two-level factorial design, effects from changes in a single parameter, as well as joint effects from simultaneous changes in several parameters, may be evaluated. The effect of including train-bridge interaction through a simple vehicle model as opposed to moving forces was found most distinct at resonance. The effect of the choice of load model was furthermore shown largest for the bridges of span length 24 and 36. m, where it was found more influential or comparable to the effect of other system parameter uncertainties. The high influence of the load model may well be attributed to the fact that the natural frequencies of the 24 and 36. m bridges are close to the vertical frequency of the primary suspension system of the train. The reduction of response obtained with the train-bridge interaction model are discussed in relation to bridge frequency rather than span length, and compared to the Additional Damping Method given in the European design code.

Place, publisher, year, edition, pages
2014. Vol. 59, 693-701 p.
Keyword [en]
Additional damping, Dynamic, Factorial experiment, Moving load, Railway bridge, Train-bridge interaction, Vibration
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering
Identifiers
URN: urn:nbn:se:kth:diva-140811DOI: 10.1016/j.engstruct.2013.10.008ISI: 000331920700060Scopus ID: 2-s2.0-84890917842OAI: oai:DiVA.org:kth-140811DiVA: diva2:693276
Note

QC 20140204

Available from: 2014-02-04 Created: 2014-01-31 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Train–Bridge Interaction: Literature Review and Parameter Screening
Open this publication in new window or tab >>Train–Bridge Interaction: Literature Review and Parameter Screening
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

New railway lines are continuously being constructed and existing lines are upgraded. Hence, there is a need for research directed towards efficient design of the supporting structures. Increasingly advanced calculation methods can be motivated, especially in projects where huge savings can be obtained from verifying that existing structures can safely support increased axle loads and higher speeds.

This thesis treats the dynamic response of bridges under freight and passenger train loads. The main focus is the idealisation of the train load and its implications for the evaluation of the vertical bridge deck acceleration. To ensure the running safety of train traffic at high speeds the European design codes set a limit on the vertical bridge deck acceleration. By considering the train–bridge interaction, that is, to model the train as rigid bodies on suspension units instead of constant moving forces, a reduction in bridge response can be obtained. The amount of reduction in bridge deck acceleration is typically between 5 and 20% for bridges with a span up to 30 m. The reduction can be higher for certain train–bridge systems and can be important also for bridge spans over 30 m. This thesis aims at clarifying for which system parameter combinations the effect of train–bridge interaction is important.

To this end, a thorough literature survey has been performed on studies in train–track–bridge dynamics. The governing parameters in 2D train–bridge systems have been further studied through a parameter screening procedure. The two-level factorial methodology was applied to study the effect of parameter variations as well as the joint effect from simultaneous changes in several parameters. The effect of the choice of load model was thus set in relation to the effect of other parameter variations.

The results show that resonance can arise from freight train traffic within realistic speed ranges (< 150 km/h). At these resonance peaks, the reduction in bridge response from a train–bridge interaction model can be considerable.

From the screening of key parameters it can furthermore be concluded that the amount of reduction obtained with a train–bridge interaction model depends on several system parameters, both for freight and passenger train loads. In line with the European design code’s guidelines for dynamic assessment of bridges under passenger trains an additional amount of damping can be introduced as a simplified way of taking into account the reduction from train–bridge interaction. The amount of additional damping is today given as function of solely the bridge span length, which is a rough simplification. The work presented in this thesis supports the need for a refined definition of the additional damping.

Abstract [sv]

Nya järnvägslinjer byggs kontinuerligt och befintliga linjer uppgraderas. Det finns därför ett behov av forskning inriktad på effektiv design av de bärande konstruktionerna. Alltmer avancerade beräkningsmetoder kan vara motiverade, särskilt i projekt där stora besparingar kan erhållas från att verifiera att befintliga konstruktioner kan bära ökade axellaster och högre hastigheter.

Föreliggande avhandling behandlar broars dynamiska respons under belastning av gods- och passagerartåg. Huvudfokus är att studera modelleringsalternativ för tåglasten och vilka konsekvenser de har för utvärderingen av brobanans vertikala acceleration. För att garantera trafiksäkerhet vid höga tåghastigheter definierar de europeiska normerna en maximalt tillåten vertikal acceleration i brobanan. Genom att beakta tåg-bro-interaktion, där tågkomponenterna modelleras som avfjädrade stela kroppar istället för konstanta punktlaster, kan en minskning av brons respons erhållas. Reduktionen av brobanans acceleration är typiskt mellan 5 och 20% för broar med en spännvidd på upp till 30 m. Minskningen kan vara högre för vissa tåg-brosystem och kan vara viktigt också för spännvidder över 30 m. Denna avhandling syftar till att klargöra för vilka kombinationer av tåg-broparametrar effekten av tåg-bro-interaktion är viktig.

I detta syfte har en omfattande litteraturstudie genomförts inom området tåg-spår-brodynamik. De styrande parametrarna i 2D tåg-brosystem har studerats vidare i en parameterstudie. Två-nivå faktorförsök har tillämpats för att studera effekten av parametervariationer samt den ytterligare effekten av samtidiga förändringar i flera parametrar. Effekten av valet av lastmodell sattes därmed i relation till effekten av andra parametervariationer.

Resultaten visar att resonans kan uppstå från godstrafik inom ett realistiskt hastighetsintervall (< 150 km/h). Vid dessa resonanstoppar kan en betydande minskning av broresponsen erhållas med en tåg-bro-interaktionsmodell.

Från studien av nyckelparametrar kan man vidare dra slutsatsen att reduktionen som erhålls med en tåg-bro-interaktionsmodell beror på flera systemparametrar, både för gods- och passargerartåg. Enligt de europeiska normernas rekommendationer för dynamisk kontroll av broar för passagerartrafik kan en ökad brodämpning introduceras som ett förenklat sätt att ta hänsyn till minskningen från tåg-bro-interaktion. Mängden tilläggsdämpning anges idag som en funktion av enbart brons spännvidd, vilket är en grov förenkling. Det arbete som presenteras i denna avhandling visar på behovet av en förbättrad definition av tilläggsdämpningen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. xii, 53 p.
Series
TRITA-BKN. Bulletin, ISSN 1103-4270 ; 122
Keyword
dynamics, vibration, railway bridge, bridge deck acceleration, moving load, train–bridge interaction, vehicle model
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering
Identifiers
urn:nbn:se:kth:diva-144843 (URN)
Presentation
2014-05-23, M108, Brinellvägen 23, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20140429

Available from: 2014-04-29 Created: 2014-04-29 Last updated: 2014-04-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Arvidsson, ThereseKaroumi, Raid

Search in DiVA

By author/editor
Arvidsson, ThereseKaroumi, RaidPacoste, Costin
By organisation
Structural Engineering and Bridges
In the same journal
Engineering structures
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 173 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf