Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Intramolecular thioether cross-linking of therapeutic proteins to increase proteolytic stability
KTH, School of Biotechnology (BIO), Protein Technology. (Amelie Eriksson Karlström)ORCID iD: 0000-0002-9969-0317
KTH, School of Biotechnology (BIO), Protein Technology.ORCID iD: 0000-0002-0695-5188
2014 (English)In: ChemBioChem (Print), ISSN 1439-4227, E-ISSN 1439-7633, Vol. 15, no 14, p. 2132-2138Article in journal (Other academic) Published
Abstract [en]

Protein-based pharmaceuticals typically display high selectivity and low toxicity, but are also characterized by low oral availability, mainly because of enzymatic degradation in the gastrointestinal tract and poor permeability across the intestinal wall. One way to increase the proteolytic stability of peptides and proteins is by intramolecular crosslinking, such as the introduction of disulfide bridges. However, disulfide bridges are at risk of thiol-disulfide exchange or reduction during production, purification, and/or therapeutic use, whereas thioether bridges are expected to be stable under the same conditions. In this study, thioether crosslinking was investigated for a 46 aa albumin-binding domain (ABD) derived from streptococcal protein G. ABD binds with high affinity to human serum albumin (HSA) and has been proposed as a fusion partner to increase the in vivo half-lives of therapeutic proteins. In the study, five ABD variants with single or double intramolecular thioether bridges were designed and synthesized. The binding affinity, secondary structure, and thermal stability of each protein was investigated by SPR-based biosensor analysis and CD spectroscopy. The proteolytic stability in the presence of the major intestinal proteases pepsin (found in the stomach) and trypsin in combination with chymotrypsin (found in pancreatin secreted to the duodenum by the pancreas) was also investigated. The most promising crosslinked variant, ABD_CL1, showed high thermal stability, retained high affinity in binding to HSA, and showed dramatically increased stability in the presence of pepsin and trypsin/chymotrypsin, compared to the ABD reference protein. This suggests that the intramolecular thioether crosslinking strategy can be used to increase the stability towards gastrointestinal enzymes.

Place, publisher, year, edition, pages
2014. Vol. 15, no 14, p. 2132-2138
Keywords [en]
Albumin binding domain, solid phase peptide synthesis, proteolytic stability, oral delivery
National Category
Biochemistry and Molecular Biology
Research subject
Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-141013DOI: 10.1002/cbic.201400002ISI: 000342807100017Scopus ID: 2-s2.0-84908153975OAI: oai:DiVA.org:kth-141013DiVA, id: diva2:693810
Funder
Swedish Research Council
Note

Updated from "Manuscript" to "Article in Journal". QC 20141112

Available from: 2014-02-05 Created: 2014-02-05 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Chemical Engineering of Small Affinity Proteins
Open this publication in new window or tab >>Chemical Engineering of Small Affinity Proteins
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Small robust affinity proteins have shown great potential for use in therapy, in vivo diagnostics, and various biotechnological applications. However, the affinity proteins often need to be modified or functionalized to be successful in many of these applications. The use of chemical synthesis for the production of the proteins can allow for site-directed functionalization not achievable by recombinant routes, including incorporation of unnatural building blocks. This thesis focuses on chemical engineering of Affibody molecules and an albumin binding domain (ABD), which both are three-helix bundle proteins of 58 and 46 amino acids, respectively, possible to synthesize using solid phase peptide synthesis (SPPS).

In the first project, an alternative synthetic route for Affibody molecules using a fragment condensation approach was investigated. This was achieved by using native chemical ligation (NCL) for the condensation reaction, yielding a native peptide bond at the site of ligation. The constant third helix of Affibody molecules enables a combinatorial approach for the preparation of a panel of different Affibody molecules, demonstrated by the synthesis of three different Affibody molecules using the same helix 3 (paper I).

In the next two projects, an Affibody molecule targeting the amyloid-beta peptide, involved in Alzheimer’s disease, was engineered. Initially the N-terminus of the Affibody molecule was shortened resulting in a considerably higher synthetic yield and higher binding affinity to the target peptide (paper II). This improved variant of the Affibody molecule was then further engineered in the next project, where a fluorescently silent variant was developed and successfully used as a tool to lock the amyloid-beta peptide in a β-hairpin conformation during studies of copper binding using fluorescence spectroscopy (paper III).

In the last two projects, synthetic variants of ABD, interesting for use as in vivo half-life extending partners to therapeutic proteins, were engineered. In the first project the possibility to covalently link a bioactive peptide, GLP-1, to the domain was investigated. This was achieved by site-specific thioether bridge-mediated cross-linking of the molecules via a polyethylene glycol (PEG)-based spacer. The conjugate showed retained high binding affinity to human serum albumin (HSA) and a biological activity comparable to a reference GLP-1 peptide (paper IV). In the last project, the possibility to increase the proteolytic stability of ABD through intramolecular cross-linking, to facilitate its use in e.g. oral drug delivery applications, was investigated. A tethered variant of ABD showed increased thermal stability and a considerably higher proteolytic stability towards pepsin, trypsin and chymotrypsin, three important proteases found in the gastrointestinal (GI) tract (paper V).

Taken together, the work presented in this thesis illustrates the potential of using chemical synthesis approaches in protein engineering.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. p. viii, 79
Series
TRITA-BIO-Report, ISSN 1654-2312 ; 2014:3
Keywords
Affibody molecules, albumin binding domain, ligation, protein synthesis, solid phase peptide synthesis
National Category
Biochemistry and Molecular Biology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-141014 (URN)978-91-7595-004-4 (ISBN)
Public defence
2014-03-07, FR4 (Oskar Klein), AlbaNova Universitetscentrum, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20140207

Available from: 2014-02-07 Created: 2014-02-05 Last updated: 2014-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Lindgren, JoelEriksson Karlström, Amelie

Search in DiVA

By author/editor
Lindgren, JoelEriksson Karlström, Amelie
By organisation
Protein Technology
In the same journal
ChemBioChem (Print)
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 217 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf