Change search
ReferencesLink to record
Permanent link

Direct link
Dual-Function Gate Driver for a Power Module With SiC Junction Field-Effect Transistors
KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.ORCID iD: 0000-0001-6184-6470
KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
KTH, School of Electrical Engineering (EES), Electrical Energy Conversion. Warsaw University of Technology, Poland .
KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.ORCID iD: 0000-0003-0570-9599
Show others and affiliations
2014 (English)In: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107, Vol. 29, no 5, 2367-2379 p.Article in journal (Refereed) Published
Abstract [en]

Silicon Carbide high-power modules populated with several parallel-connected junction field-effect transistors must be driven properly. Parasitic elements could act as drawbacks in order to achieve fast and oscillation-free switching performance, which are the main goals. These two requirements are related closely to the design of the gate-drive unit, and they must be kept under certain limits when high efficiencies are targeted. This paper deeply investigates several versions of gate-drive units and proposes a dual-function gate-drive unit which is able to switch the module with an acceptable speed without letting the current suffer from significant oscillations. It is experimentally shown that turn-on and turn-off switching times of approximately 130 and 185 ns respectively can be reached, while the magnitude of the current oscillations is kept at an adequate level. Moreover, using the proposed gate driver an efficiency of approximately 99.7% is expected for a three-phase converter rated at 125 kVA and having a switching frequency of 2 kHz.

Place, publisher, year, edition, pages
IEEE , 2014. Vol. 29, no 5, 2367-2379 p.
Keyword [en]
Gate driver, junction field effect transistor, power module, silicone carbide
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
SRA - Energy
URN: urn:nbn:se:kth:diva-141276DOI: 10.1109/TPEL.2013.2277616ISI: 000329991500024ScopusID: 2-s2.0-84893083630OAI: diva2:696122

QC 20140213

Available from: 2014-02-13 Created: 2014-02-13 Last updated: 2016-09-16Bibliographically approved
In thesis
1. Extreme Implementations of Wide-Bandgap Semiconductors in Power Electronics
Open this publication in new window or tab >>Extreme Implementations of Wide-Bandgap Semiconductors in Power Electronics
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Wide-bandgap (WBG) semiconductor materials such as silicon carbide (SiC) and gallium-nitride (GaN) allow higher voltage ratings, lower on-state voltage drops, higher switching frequencies, and higher maximum temperatures. All these advantages make them an attractive choice when high-power density and high-efficiency converters are targeted. Two different gate-driver designs for SiC power devices are presented. First, a dual-function gate-driver for a power module populated with SiC junction field-effect transistors that finds a trade-off between fast switching speeds and a low oscillative performance has been presented and experimentally verified. Second, a gate-driver for SiC metal-oxide semiconductor field-effect transistors with a short-circuit protection scheme that is able to protect the converter against short-circuit conditions without compromising the switching performance during normal operation is presented and experimentally validated. The benefits and issues of using parallel-connection as the design strategy for high-efficiency and high-power converters have been presented. In order to evaluate parallel connection, a 312 kVA three-phase SiC inverter with an efficiency of 99.3 % has been designed, built, and experimentally verified. If parallel connection is chosen as design direction, an undesired trade-off between reliability and efficiency is introduced. A reliability analysis has been performed, which has shown that the gate-source voltage stress determines the reliability of the entire system. Decreasing the positive gate-source voltage could increase the reliability without significantly affecting the efficiency. If high-temperature applications are considered, relatively little attention has been paid to passive components for harsh environments. This thesis also addresses high-temperature operation. The high-temperature performance of two different designs of inductors have been tested up to 600_C. Finally, a GaN power field-effect transistor was characterized down to cryogenic temperatures. An 85 % reduction of the on-state resistance was measured at −195_C. Finally, an experimental evaluation of a 1 kW singlephase inverter at low temperatures was performed. A 33 % reduction in losses compared to room temperature was achieved at rated power.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. 101 p.
TRITA-EE, ISSN 1653-5146 ; 2016:145
Cryogenic, Gallium Nitride, Gate Driver, Harsh Environments, High Efficiency Converter, High Temperature, MOSFETs, Normally- ON JFETs, Reliability, Silicon Carbide, Wide-Band Gap Semiconductors
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
urn:nbn:se:kth:diva-192626 (URN)978-91-7729-109-1 (ISBN)
Public defence
2016-10-14, Kollegiesalen, Brinellvägen 8, KTH-huset, KTH, Stockholm, 09:53 (English)

QC 20160922

Available from: 2016-09-22 Created: 2016-09-16 Last updated: 2016-09-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Colmenares, JuanPeftitsis, DimosthenisRabkowski, JacekSadik, Diane-PerleNee, Hans-Peter
By organisation
Electrical Energy Conversion
In the same journal
IEEE transactions on power electronics
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 102 hits
ReferencesLink to record
Permanent link

Direct link