Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The impact of roads on hydrological responses: A case study in Sweden
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.ORCID iD: 0000-0002-0378-837X
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

A method engaged for simulating and assessing the alterations excreted by road topography within watersheds and estimating the road effects on hydrologic responses. The method uses Geographic Information System (GIS) to allocate and eliminate roads from the elevation data. HEC-HMS was used to model surface and near surface hydrological responses of watersheds with roads and without roads in response to three storms with different intensities. A detailed study of the simulated flow duration curves showed differences between 20 watersheds for three different storms based on a digital elevation data with and without roads. To compare flow duration curves, L-moment ratios were calculated and their variation compared. An increase in peak flow and reduced delay occurred with increased storm intensity. Variations of the L-moment ratios were larger in larger watersheds. However, the impact of the roads was much smaller and only possible to identify by detailed examination of statistical descriptors. The results are useful to gain a better estimating of the effect of road topography in hydrological processes and responses especially in high storm intensities.

Keyword [en]
Road topography; HEC-HMS; Flow Duration Curves; L-moment ratios.
National Category
Other Environmental Engineering
Research subject
Land and Water Resources Engineering
Identifiers
URN: urn:nbn:se:kth:diva-141353OAI: oai:DiVA.org:kth-141353DiVA: diva2:696440
Note

QS 2014

Available from: 2014-02-13 Created: 2014-02-13 Last updated: 2016-05-12Bibliographically approved
In thesis
1. The role of roads on hydrological response: Modeling and assessment for Swedish watersheds
Open this publication in new window or tab >>The role of roads on hydrological response: Modeling and assessment for Swedish watersheds
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Understanding the role of road networks in alteration of hydrological responses is crucial for maintaining the accessibility and durability of road infrastructures. Road construction is one of the most common man made disturbances to a landscape. However, still the quantitative role of road topographical and geo-morphological properties on the hydrological response

of storms in catchments is only partially understood. The aim of this study was to use new methods to estimate and quantify the flood hazard probability with reference to the most influential physical catchment descriptors and road characteristics. In addition physical based modelling was used to estimate the effect of road topography on the hydrological responses of watersheds to storms with different intensities. A simple method was developed and discussed to address the most susceptible locations to flooding along the roads. Multivariate statistical analysis (PLS) employed to quantify the flood risk probability in the road-stream crossings concerning the correlation between the quantities of the physical catchment descriptors and occurrence/absence of flooding. The most influential factors in describing the probability of flooding along the roads were topographic wetness index, soil properties, road density and channel slopes. A detailed study of simulated flow duration curves showed differences between 20 watersheds for three different storms based on a digital elevation data with and without roads. An increase in peak flow and reduced delay occurred with increased storm intensity. However, the impact of the roads was much smaller and only possible to identify by detailed examination of statistical descriptors.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. x, 33 p.
Series
TRITA-LWR. LIC, ISSN 1650-8629 ; 3024:02
Keyword
GIS, Roads, Flooding, HEC-HMS, Sweden
National Category
Environmental Management
Research subject
Land and Water Resources Engineering
Identifiers
urn:nbn:se:kth:diva-141354 (URN)978-91-7595-026-6 (ISBN)
Presentation
2014-02-25, Lecture room V3, Teknikringen 72, KTH, Stockholm, 13:15 (English)
Opponent
Supervisors
Note

QC 20140214

Available from: 2014-02-14 Created: 2014-02-13 Last updated: 2014-02-14Bibliographically approved
2. Road disasters? Modeling and assessment of Swedish roads within crucial climate conditions
Open this publication in new window or tab >>Road disasters? Modeling and assessment of Swedish roads within crucial climate conditions
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

An efficient maintenance of roads to ensure high accessibility and durability of the transport capacity requires an understanding of how the hydrological response depends on both the road and the landscape characteristics. New methods and data were used to identify and explain interaction between roads and surrounding environment and their influence on hydrologic responses both in watershed scale and road-section scale. In the watershed scale, flood hazard probability was made with reference to the most influential physical catchment descriptors and road characteristics. Additionally, a physical based model was used to estimate the effect of road topography on the hydrological responses of 20 watersheds to storms with different intensities. A simple method was developed and discussed to address flood risk probability in the road-stream crossings concerning the correlation between the quantities of the physical catchment descriptors and occurrence/absence of flooding. The most influential factors in describing the probability of flooding along the roads were topographic wetness index, soil properties, road density and channel slopes. A detailed study of simulated flow duration curves showed differences between the 20 watersheds for three different storms based on topography with and without roads. An increase in peak flow and reduced time to pick occurred with existence of roads and increased storm intensity.In the road-section scale, an uncertainty-based simulation approach was used to identify the most influencing processes in controlling the dynamics of the groundwater level. A model (CoupModel) set up with four different geological stratifications was made to model two positions in a slope upstream of a road with drainage pipes and ditches. Results from the simulations indicate the significance of precipitation rate, road drainage and position in hillslope, and soil properties and stratifications in controlling groundwater levels. The same model was also applied to simulate soil moisture and temperature dynamics in two road sections by using groundwater and climate data. Porous media properties were obtained as statistical distribution function that provided the best performance of moisture and temperature dynamic in the road layers and underlying soil.

Abstract [sv]

Ett effektivt vägunderhåll som garanterar tillgänglig och varaktig transportkapacitet förutsätter kunskap om hydrologin i ett område beror av både vägens och landskapets egenskaper. Nya metoder och data utvecklades i projektet och användes för att identifiera och förklara samspelet mellan vägar och omgivande miljö, samt hur detta inverkar på hydrologiska svar på nederbörd, i skalor som avser hela avrinningsområden och/eller enskilda vägsektioner. I avrinningsområdet identifierades de mest betydelsefulla faktorerna för översvämningsrisker, så som fysikaliska avrinningsområdesegenskaper och vägegenskaper. Dessutom användes en fysikalisk modell för att beräkna effekten av hur vägarnas topografi påverkar avrinningens dynamik vid nederbörd för 20 olika avrinningsområden med olika nederbördsintensitet. En metod för detta utvecklades och användes för att diskutera översvämningsrisker i sektioner där vattendrag och väg korsas, genom att sammanföra egenskaper som är korrelerade med förekomst eller avsaknad av översvämnningar. De mest betydelsefulla faktorerna för förekomst av översvämning var topografiskt fuktindex, markegenskaper, vägtäthet och lutning hos vattendragen. En detaljerad studie av simulerad varaktighet av avrinningsintensiteter visade skillnader för de 20 olika områdena och 3 olika nederbördsintensiteter beroende på om områdena innfattade vägar eller ej. En ökning av toppflöden och en reducerad tid för att nå toppflödet erhölls för områden med vägar.För vägsektioner användes en osäkerhetsbaserad metod för att identifiera de mest betydelsfulla processerna som reglerar dynamiken hos grundvattennivån, genom modellen (CoupModel). För ändamålet definierades 4 olika geologiska lagerföljder för 2 positioner i en sluttning uppströms en väg med dräneringsrör och diken. Resultaten från simuleringarna beskrev hur betydelsen av nederbördsintensitet, vägdränering och vägens position i sluttningem samt markegenskaper och dess lagerföljder påverkar grundvattennivåns dynamik. Samma modell användes också för simulera dynamiken hos markvatten och marktemperaturer i 2 vägsektioner genom att använda data om grundvattennivå och klimat som dynamiska styrande randvillkor. Egenskaper hos porösa media erhölls genom statistiska fördelningsfunktioner av parametervärden som på bästa sätt återgav dynamiken av fuktighet och temperatur i vägens olika lager och underliggande mark.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. xii, 43 p.
Series
TRITA-LWR. PHD, ISSN 1650-8602 ; 2016:06
Keyword
Road, Flood, Moisture, Temperature, Groundwater, GIS, Uncertainity, Sweden
National Category
Environmental Management Geophysical Engineering Water Engineering Remote Sensing
Research subject
Land and Water Resources Engineering
Identifiers
urn:nbn:se:kth:diva-186410 (URN)978-91-7729-017-9 (ISBN)
Public defence
2016-06-03, Kollegiesalen, Brinellvägen 8, KTH-campus, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20160512

Available from: 2016-05-12 Created: 2016-05-11 Last updated: 2016-05-12Bibliographically approved

Open Access in DiVA

Paper iii(709 kB)201 downloads
File information
File name FULLTEXT01.pdfFile size 709 kBChecksum SHA-512
30cc8504bb30c66fa0ce9958331b4a0c0b9910da5ee193626c955a3ec9f3e60cc3c963bb23b8205483bb31df55437ca82c10d67e95f26304ed9bdc9c40894a5a
Type fulltextMimetype application/pdf

Authority records BETA

Nickman, Alireza

Search in DiVA

By author/editor
Nickman, AlirezaJansson, Per-ErikOlofsson, BoKalantari, Zahra
By organisation
Land and Water Resources Engineering
Other Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 201 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 188 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf