CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt154",{id:"formSmash:upper:j_idt154",widgetVar:"widget_formSmash_upper_j_idt154",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt155_j_idt157",{id:"formSmash:upper:j_idt155:j_idt157",widgetVar:"widget_formSmash_upper_j_idt155_j_idt157",target:"formSmash:upper:j_idt155:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On the Theorem of Uniform Recovery of Random Sampling MatricesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2014 (English)In: IEEE Transactions on Information Theory, ISSN 0018-9448, E-ISSN 1557-9654, Vol. 60, no 3, p. 1700-1710Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2014. Vol. 60, no 3, p. 1700-1710
##### Keywords [en]

Bounded orthogonal systems, compressive sensing, effective sparsity, l(1)-minimization, random sampling matrices, restricted isometry property
##### National Category

Signal Processing Other Mathematics Computational Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-141831DOI: 10.1109/TIT.2014.2300092ISI: 000331902400026Scopus ID: 2-s2.0-84896839927OAI: oai:DiVA.org:kth-141831DiVA, id: diva2:698794
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt474",{id:"formSmash:j_idt474",widgetVar:"widget_formSmash_j_idt474",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt481",{id:"formSmash:j_idt481",widgetVar:"widget_formSmash_j_idt481",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt488",{id:"formSmash:j_idt488",widgetVar:"widget_formSmash_j_idt488",multiple:true});
##### Note

##### In thesis

We consider two theorems from the theory of compressive sensing. Mainly a theorem concerning uniform recovery of random sampling matrices, where the number of samples needed in order to recover an s-sparse signal from linear measurements (with high probability) is known to be m greater than or similar to s(ln s)(3) ln N. We present new and improved constants together with what we consider to be a more explicit proof. A proof that also allows for a slightly larger class of m x N-matrices, by considering what is called effective sparsity. We also present a condition on the so-called restricted isometry constants, delta s, ensuring sparse recovery via l(1)-minimization. We show that delta(2s) < 4/root 41 is sufficient and that this can be improved further to almost allow for a sufficient condition of the type delta(2s) < 2/3.

QC 20140228

Available from: 2014-02-25 Created: 2014-02-25 Last updated: 2017-12-05Bibliographically approved1. On Invertibility of the Radon Transform and Compressive Sensing$(function(){PrimeFaces.cw("OverlayPanel","overlay698802",{id:"formSmash:j_idt828:0:j_idt832",widgetVar:"overlay698802",target:"formSmash:j_idt828:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1324",{id:"formSmash:j_idt1324",widgetVar:"widget_formSmash_j_idt1324",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1377",{id:"formSmash:lower:j_idt1377",widgetVar:"widget_formSmash_lower_j_idt1377",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1378_j_idt1380",{id:"formSmash:lower:j_idt1378:j_idt1380",widgetVar:"widget_formSmash_lower_j_idt1378_j_idt1380",target:"formSmash:lower:j_idt1378:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});