Change search
ReferencesLink to record
Permanent link

Direct link
Effect of calcium oxide on high-temperature steam gasification of municipal solid waste
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.ORCID iD: 0000-0002-1837-5439
Show others and affiliations
2014 (English)In: Fuel, ISSN 0016-2361, Vol. 122, 36-46 p.Article in journal (Refereed) Published
Abstract [en]

Steam gasification of municipal solid waste (MSW) using a CaO additive was investigated in a batch-type fixed bed, to examine the effects of CaO addition on the heat transfer properties, the devolatilization characteristics of MSW, CO2 adsorption capacities of CaO, and char gasification in the presence of steam. Evolutionary behaviors of syngas molar compositions and individual gas flow rates at both MSW devolatilization and char gasification stages were examined at different CaO/MSW mass ratios with a fixed MSW mass. The effect of temperature varying from 700 to 900 C was also considered in this test. In both stages, hydrogen concentrations were found to increase and CaO was found to have a catalytic effect. Finally, using from the experimental observations and the results of SEM/EDS analyses of the obtained residues, the mechanism underlying the catalytic effects of calcium species in both reaction stages was discussed.

Place, publisher, year, edition, pages
2014. Vol. 122, 36-46 p.
Keyword [en]
Calcium oxide, Gasification, Municipal solid waste, Syngas
National Category
Energy Systems
URN: urn:nbn:se:kth:diva-142313DOI: 10.1016/j.fuel.2014.01.029ISI: 000331544100005ScopusID: 2-s2.0-84893299983OAI: diva2:703059

QC 20140305

Available from: 2014-03-05 Created: 2014-02-28 Last updated: 2014-10-28Bibliographically approved
In thesis
1. Gasification and Pyrolysis Characterization and Heat Transfer Phenomena During Thermal Conversion of Municipal Solid Waste
Open this publication in new window or tab >>Gasification and Pyrolysis Characterization and Heat Transfer Phenomena During Thermal Conversion of Municipal Solid Waste
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The significant generation of municipal solid waste (MSW) has become a controversial global issue. Pyrolysis and gasification technologies for treating rejects from solid waste disposal sites (SWDSs), for which over 50 % of MSW is attributed to combustible species, have attracted considerable attention. MSW is an alternative energy source that can partly replace fossil resources; there is an increasing awareness that global warming caused by the utilization of fossil resources is occurring.

The goal of this thesis is to realize the efficient and rational utilization of MSW and decrease the harmful impact of pollutants, such as dioxin, HCl, and CO2, on the environment. To achieve this goal, some fundamental studies have been experimentally and numerically conducted to enhance the understanding of the properties of municipal solid waste thermal conversion.

In this thesis, the pyrolysis behaviors of single pelletized recovered fuel were tested. A detailed comparison of the pyrolysis behaviors of typical recovered solid waste and biomass particles was conducted. A swelling phenomenon with a swelling ratio of approximately 1.6 was observed on the surface of pelletized recovered fuels. Subsequently, a particle model was constructed to describe the thermal conversion process for large recovered fuel particles that are composed of a high fraction of polyethylene (PE) and a comparable low fraction of cardboard. The results indicate that an understanding of the heat transfer mechanism in highly porous and molten structures and the selection of a heat transfer model are crucial for accurate prediction of the conversion process.

MSW pyrolysis is a promising method for producing liquid products. With the exception of lignocellulosic materials, such as printing paper and cardboard, PE, polystyrene (PS), polypropylene (PP), polyethylene terephthalate (PET), and polyvinyl chloride (PVC) are the six main polymers in domestic waste in Europe. Characterization studies of the products obtained from these individual components, such as PE, PET, PVC, printing paper, and cardboard, have been conducted on a pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) system and a fixed-bed reactor. The possible pathways for the formation of the main primary/secondary products in rapid and conventional pyrolysis were also discussed.

MSW steam gasification with CaO was performed in a batch-type fixed-bed gasifier to examine the effect of CaO addition on the heat transfer properties, pollutant removal, and devolatilization and char gasification behaviors in the presence of steam.

A new carbon capture and recycle (CCR) system combined with an integrated municipal solid waste system was proposed. The foundation of the system is the development of a novel method to remediate CO2 using a high-temperature process of reforming CH4 and/or O2 and/or H2O without catalysts. Thermodynamic and experimental studies were performed. High temperatures significantly promoted the multi-reforming process while preventing the problem of catalyst deactivation. Potential improvements in the efficiency of the novel technology can be achieved by optimizing the reforming reactants. Landfill gas (LFG) and fuel gas from bio-waste treatment contain a considerable fraction of CH4, which may be a source of CH4 for this process.  

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. xiv, 127 p.
municipal solid waste, pyrolysis, gasification, heat transfer, CaO, CO2, reforming, numerical model
National Category
Energy Engineering
Research subject
Energy Technology; Chemical Engineering
urn:nbn:se:kth:diva-154587 (URN)978-91-7595-284-0 (ISBN)
Public defence
2014-11-10, Sal F3, Lindstedtvägen 26, KTH, stockholm, 10:00 (English)


Available from: 2014-10-28 Created: 2014-10-24 Last updated: 2014-10-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Zhou, ChunguangGunarathne, RathnayakaYang, WeihongBlasiak, Wlodzimierz
By organisation
Energy and Furnace Technology
In the same journal
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 105 hits
ReferencesLink to record
Permanent link

Direct link