Change search
ReferencesLink to record
Permanent link

Direct link
Mean-field and direct numerical simulations of magnetic flux concentrations from vertical field
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.ORCID iD: 0000-0002-7304-021X
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
Show others and affiliations
2014 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 562, A53- p.Article in journal (Refereed) Published
Abstract [en]

Context. Strongly stratified hydromagnetic turbulence has previously been found to produce magnetic flux concentrations if the domain is large enough compared with the size of turbulent eddies. Mean-field simulations (MFS) using parameterizations of the Reynolds and Maxwell stresses show a large-scale negative effective magnetic pressure instability and have been able to reproduce many aspects of direct numerical simulations (DNS) regarding growth rate, shape of the resulting magnetic structures, and their height as a function of magnetic field strength. Unlike the case of an imposed horizontal field, for a vertical one, magnetic flux concentrations of equipartition strength with the turbulence can be reached, resulting in magnetic spots that are reminiscent of sunspots. Aims. We determine under what conditions magnetic flux concentrations with vertical field occur and what their internal structure is. Methods. We use a combination of MFS, DNS, and implicit large-eddy simulations (ILES) to characterize the resulting magnetic flux concentrations in forced isothermal turbulence with an imposed vertical magnetic field. Results. Using DNS, we confirm earlier results that in the kinematic stage of the large-scale instability the horizontal wavelength of structures is about 10 times the density scale height. At later times, even larger structures are being produced in a fashion similar to inverse spectral transfer in helically driven turbulence. Using ILES, we find that magnetic flux concentrations occur for Mach numbers between 0.1 and 0.7. They occur also for weaker stratification and larger turbulent eddies if the domain is wide enough. Using MFS, the size and aspect ratio of magnetic structures are determined as functions of two input parameters characterizing the parameterization of the effective magnetic pressure. DNS, ILES, and MFS show magnetic flux tubes with mean-field energies comparable to the turbulent kinetic energy. These tubes can reach a length of about eight density scale heights. Despite being ≤1% equipartition strength, it is important that their lower part is included within the computational domain to achieve the full strength of the instability. Conclusions. The resulting vertical magnetic flux tubes are being confined by downflows along the tubes and corresponding inflow from the sides, which keep the field concentrated. Application to sunspots remains a viable possibility.

Place, publisher, year, edition, pages
2014. Vol. 562, A53- p.
Keyword [en]
Hydrodynamics, Magnetic fields, Sun: magnetic fields, Sunspots, Turbulence
National Category
Astronomy, Astrophysics and Cosmology
URN: urn:nbn:se:kth:diva-142816DOI: 10.1051/0004-6361/201322681ISI: 000332161800105ScopusID: 2-s2.0-84893610405OAI: diva2:704478
EU, European Research Council, 227952 227915Swedish Research Council, 2012-5797 621-2011-5076

QC 20140312

Available from: 2014-03-12 Created: 2014-03-12 Last updated: 2014-04-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Brandenburg, AxelGressel, OliverJabbari, SarahKleeorin, NathanRogachevskii, Igor
By organisation
Nordic Institute for Theoretical Physics NORDITA
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 30 hits
ReferencesLink to record
Permanent link

Direct link