Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Life cycle assessment as a decision support tool for bridge procurement: environmental impact comparison among five bridge designs
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges. ÅF Infrastructure AB, Sweden.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges. Skanska Sverige AB, Sweden.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0002-5447-2068
2014 (English)In: The International Journal of Life Cycle Assessment, ISSN 0948-3349, E-ISSN 1614-7502, Vol. 19, no 12, 1948-1964 p.Article in journal (Refereed) Published
Abstract [en]

The conventional decision-making for bridges is mostly focusing on technical, economical, and safety perspectives. Nowadays, the society devotes an ever-increased effort to the construction sector regarding their environmental performance. However, considering the complexity of the environmental problems and the diverse character of bridges, the related research for bridge as a whole system is very rare. Most existing studies were only conducted for a single indicator, part of the structure components, or a specific life stage. Life Cycle Assessment (LCA) is an internationally standardized method for quantifying the environmental impact of a product, asset, or service throughout its whole life cycle. However, in the construction sector, LCA is usually applied in the procurement of buildings, but not bridges as yet. This paper presents a comprehensive LCA framework for road bridges, complied with LCA ReCiPe (H) methodology. The framework enables identification of the key structural components and life cycle stages of bridges, followed by aggregation of the environmental impacts into monetary values. The utility of the framework is illustrated by a practical case study comparing five designs for the Karlsnas Bridge in Sweden, which is currently under construction. This paper comprehensively analyzed 20 types of environmental indicators among five proposed bridge designs, which remedies the absence of full spectrum of environmental indicators in the current state of the art. The results show that the monetary weighting system and uncertainties in key variables such as the steel recycling rate and cement content may highly affect the LCA outcome. The materials, structural elements, and overall designs also have varying influences in different impact categories. The result can be largely affected by the system boundaries, surrounding environment, input uncertainties, considered impact indicators, and the weighting systems applied; thus, no general conclusions can be drawn without specifying such issues. Robustly evaluating and ranking the environmental impact of various bridge designs is far from straightforward. This paper is an important attempt to evaluate various designs from full dimensions. The results show that the indicators and weighting systems must be clearly specified to be applicable in a transparent procurement. This paper provides vital knowledge guiding the decision maker to select the most LCA-feasible proposal and mitigate the environmental burden in the early stage.

Place, publisher, year, edition, pages
2014. Vol. 19, no 12, 1948-1964 p.
Keyword [en]
Sustainable construction, Life cycle assessment, LCA, LCA for bridges, Global warming, Bridge, Carbon footprint, Environment, CO2 emission
National Category
Environmental Management Infrastructure Engineering Construction Management Environmental Analysis and Construction Information Technology
Research subject
Civil and Architectural Engineering; Järnvägsgruppen - Infrastruktur
Identifiers
URN: urn:nbn:se:kth:diva-142919DOI: 10.1007/s11367-014-0797-zISI: 000344785900005Scopus ID: 2-s2.0-84922073703OAI: oai:DiVA.org:kth-142919DiVA: diva2:704994
Note

QC 20141215

Available from: 2014-03-13 Created: 2014-03-13 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Life cycle assessment of bridges, model development and case studies
Open this publication in new window or tab >>Life cycle assessment of bridges, model development and case studies
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In recent decades, the environmental issues from the construction sector have attracted increasing attention from both the public and authorities. Notably, the bridge construction is responsible for considerable amount of energy and raw material consumptions. However, the current bridges are still mainly designed from the economic, technical, and safety perspective, while considerations of their environmental performance are rarely integrated into the decision making process. Life Cycle Assessment (LCA) is a comprehensive, standardized and internationally recognized approach for quantifying all emissions, resource consumption and related environmental and health impacts linked to a service, asset or product. LCA has the potential to provide reliable environmental profiles of the bridges, and thus help the decision-makers to select the most environmentally optimal designs. However, due to the complexity of the environmental problems and the diversity of bridge structures, robust environmental evaluation of bridges is far from straightforward. The LCA has rarely been studied on bridges till now.

The overall aim of this research is to implement LCA on bridge, thus eventually integrate it into the decision-making process to mitigate the environmental burden at an early stage. Specific objectives are to: i) provide up-to-date knowledge to practitioners; ii) identify associated obstacles and clarify key operational issues; iii) establish a holistic framework and develop computational tool for bridge LCA; and iv) explore the feasibility of combining LCA with life cycle cost (LCC). The developed tool (called GreenBridge) enables the simultaneous comparison and analysis of 10 feasible bridges at any detail level, and the framework has been utilized on real cases in Sweden. The studied bridge types include: railway bridge with ballast or fix-slab track, road bridges of steel box-girder composite bridge, steel I-girder composite bridge, post tensioned concrete box-girder bridge, balanced cantilever concrete box-girder bridge, steel-soil composite bridge and concrete slab-frame bridge. The assessments are detailed from cradle to grave phases, covering thousands of types of substances in the output, diverse mid-point environmental indicators, the Cumulative Energy Demand (CED) and monetary value weighting. Some analyses also investigated the impact from on-site construction scenarios, which have been overlooked in the current state-of-the-art.

The study identifies the major structural and life-cycle scenario contributors to the selected impact categories, and reveals the effects of varying the monetary weighting system, the steel recycling rate and the material types. The result shows that the environmental performance can be highly influenced by the choice of bridge design. The optimal solution is found to be governed by several variables. The analyses also imply that the selected indicators, structural components and life-cycle scenarios must be clearly specified to be applicable in a transparent procurement. This work may provide important references for evaluating similar bridge cases, and identification of the main sources of environmental burden. The outcome of this research may serve as recommendation for decision-makers to select the most LCA-feasible proposal and minimize environmental burdens. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. x, 36 p.
Series
TRITA-BKN. Bulletin, ISSN 1103-4270 ; 129
Keyword
Sustainable construction; Life cycle assessment; LCA; Global warming; Bridge LCA; CO2 emissions; Cumulative energy demand
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering
Identifiers
urn:nbn:se:kth:diva-161196 (URN)
Public defence
2015-03-30, Kollegiesalen, Brinellvägen 8, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20150311

Available from: 2015-03-11 Created: 2015-03-09 Last updated: 2015-09-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Karoumi, Raid

Search in DiVA

By author/editor
Du, GuangliSafi, MohammedPettersson, LarsKaroumi, Raid
By organisation
Structural Engineering and Bridges
In the same journal
The International Journal of Life Cycle Assessment
Environmental ManagementInfrastructure EngineeringConstruction ManagementEnvironmental Analysis and Construction Information Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 332 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf