Change search
ReferencesLink to record
Permanent link

Direct link
Fuel efficiency improvement in HEVs using electromechanical brake system
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.ORCID iD: 0000-0002-3626-6367
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.ORCID iD: 0000-0002-7550-3134
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.ORCID iD: 0000-0001-5703-5923
2013 (English)In: 2013 IEEE Intelligent Vehicles Symposium (IV), IEEE , 2013, 322-327 p.Conference paper (Refereed)
Abstract [en]

Today, two of the main concerns in transportation industry are reducing fuel consumption and emissions, and tough regulations are put on the vehicle manufacturers in these regards. One of the main approaches towards reducing CO2 emissions is hybridization of the powertrain system. Substantial R&D in this area over the last couple of years has resulted in rather optimal components and control strategies, and hence that further substantial improvements are difficult. This motivates research on other energy consuming vehicle subsystems, e.g. pneumatic and hydraulic systems. In this paper, the brake system of a hybrid city bus is studied. A complete electrification of the primary brake system would eliminate the use of low efficiency pneumatics for braking. It is therefore interesting to investigate how much energy can be saved by using electrically actuated and controlled primary brakes. The study is based on simulations in Autonomie which is a MATLAB/SIMULINK based vehicle simulation software package. Different representative driving cycles are studied. It is shown that fuel consumption can be reduced in the range of 0.5 to 1.5% by substituting the pneumatic brake system with a mechatronic one. This may seem limited, but can, combined with substitution of also other less efficient subsystems with their mechatronic counterparts, result in a substantial environmental and economic improvement.

Place, publisher, year, edition, pages
IEEE , 2013. 322-327 p.
, IEEE Intelligent Vehicles Symposium, Proceedings, ISSN 1931-0587
Keyword [en]
Control strategies, Economic improvements, Electromechanical brake, Fuel efficiency improvement, Pneumatic brake system, Power-train systems, Transportation industry, Vehicle manufacturers
National Category
Control Engineering Vehicle Engineering
URN: urn:nbn:se:kth:diva-143142DOI: 10.1109/IVS.2013.6629489ISI: 000339402900027ScopusID: 2-s2.0-84892385920ISBN: 978-146732755-8OAI: diva2:706108
2013 IEEE Intelligent Vehicles Symposium, IEEE IV 2013; Gold Coast, QLD; Australia; 23 June 2013 through 26 June 2013

QC 20140319

Available from: 2014-03-19 Created: 2014-03-17 Last updated: 2016-01-28Bibliographically approved
In thesis
1. Improving Fuel Efficiency of Commercial Vehicles through Optimal Control of Energy Buffers
Open this publication in new window or tab >>Improving Fuel Efficiency of Commercial Vehicles through Optimal Control of Energy Buffers
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fuel consumption reduction is one of the main challenges in the automotiveindustry due to its economical and environmental impacts as well as legalregulations. While fuel consumption reduction is important for all vehicles,it has larger benefits for commercial ones due to their long operational timesand much higher fuel consumption.

Optimal control of multiple energy buffers within the vehicle proves aneffective approach for reducing energy consumption. Energy is temporarilystored in a buffer when its cost is small and released when it is relativelyexpensive. An example of an energy buffer is the vehicle body. Before goingup a hill, the vehicle can accelerate to increase its kinetic energy, which canthen be consumed on the uphill stretch to reduce the engine load. The simplestrategy proves effective for reducing fuel consumption.

The thesis generalizes the energy buffer concept to various vehicular componentswith distinct physical disciplines so that they share the same modelstructure reflecting energy flow. The thesis furthermore improves widely appliedcontrol methods and apply them to new applications.

The contribution of the thesis can be summarized as follows:

• Developing a new function to make the equivalent consumption minimizationstrategy (ECMS) controller (which is one of the well-knownoptimal energy management methods in hybrid electric vehicles (HEVs))more robust.

• Developing an integrated controller to optimize torque split and gearnumber simultaneously for both reducing fuel consumption and improvingdrivability of HEVs.

• Developing a one-step prediction control method for improving the gearchanging decision.

• Studying the potential fuel efficiency improvement of using electromechanicalbrake (EMB) on a hybrid electric city bus.

• Evaluating the potential improvement of fuel economy of the electricallyactuated engine cooling system through the off-line global optimizationmethod.

• Developing a linear time variant model predictive controller (LTV-MPC)for the real-time control of the electric engine cooling system of heavytrucks and implementing it on a real truck.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. xviii, 71 p.
TRITA-MMK, ISSN 1400-1179 ; 2016:01
Energy buffer, Optimal control, Hybrid electric vehicle, Engine cooling system, Equivalent consumption minimization strategy, Model predictive control
National Category
Mechanical Engineering Control Engineering Energy Engineering
Research subject
Machine Design
urn:nbn:se:kth:diva-181071 (URN)978-91-7595-850-7 (ISBN)
Public defence
2016-02-18, F3, Lindstedtsvägen 26, KTH, Stockholm, 13:00 (English)

QC 20160128

Available from: 2016-01-28 Created: 2016-01-28 Last updated: 2016-01-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Khodabakhshian, MohammadWikander, JanFeng, Lei
By organisation
Control EngineeringVehicle Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 83 hits
ReferencesLink to record
Permanent link

Direct link