Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Quasi static analysis of creasing and folding for three paperboards
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Solid Mechanics (Div.). KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
2014 (English)In: Mechanics of materials (Print), ISSN 0167-6636, E-ISSN 1872-7743, Vol. 69, no 1, 11-34 p.Article in journal (Refereed) Published
Abstract [en]

The creasing and folding behavior of three paperboards have been studied both experimentally and numerically. Creasing and folding studies were performed on strips in both the machine direction and the cross machine direction. A finite element model that mimicked the experimental creasing and folding setup was developed, and the creasing and folding behavior could be well predicted for all three paperboards. An experimental characterization scheme consisting of three experiments was proposed, and was shown to be sufficient to predict the creasing and folding behavior. For the whole paperboard the shear strength profiles in the through thickness direction was determined with the notched shear test. Each ply was laid free by grinding, and density measurements and in-plane tension tests were performed on the bottom, middle and top plies of each paperboard. Instead of assuming uniform properties in each ply, the shear strength profiles were used to map the measured properties in the through thickness direction. Numerical simulations were performed when the ply and interface properties of the paperboards were altered to follow different shear strength profiles. This was done in order to mimic different production strategies. It was shown that the interface strengths mainly influenced the folding behavior. Whereas altered the ply properties affected the creasing force needed.

Place, publisher, year, edition, pages
2014. Vol. 69, no 1, 11-34 p.
Keyword [en]
Paperboard, Creasing, Folding, Numerical modeling, Shear strength
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-143452DOI: 10.1016/j.mechmat.2013.09.016ISI: 000331352000002Scopus ID: 2-s2.0-84886701248OAI: oai:DiVA.org:kth-143452DiVA: diva2:707380
Note

QC 20140324

Available from: 2014-03-24 Created: 2014-03-21 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Huang, HuiHagman, AntonNygårds, Mikael
By organisation
Solid Mechanics (Div.)VinnExcellence Center BiMaC InnovationSolid Mechanics (Dept.)
In the same journal
Mechanics of materials (Print)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 99 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf