Change search
ReferencesLink to record
Permanent link

Direct link
Rotational response of superconductors: Magnetorotational isomorphism and rotation-induced vortex lattice
KTH, School of Engineering Sciences (SCI), Theoretical Physics, Statistical Physics.
2014 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 89, no 10, 104501- p.Article in journal (Refereed) Published
Abstract [en]

The analysis of nonclassical rotational response of superfluids and superconductors was performed by Onsager [Onsager, Nuovo Cimento, Suppl. 6, 279 (1949)] and London [Superfluids (Wiley, NewYork, 1950)] and crucially advanced by Feynman [Prog. Low Temp. Phys. 1, 17 (1955)]. It was established that, in the thermodynamic limit, neutral superfluids rotate by forming-without any threshold-a vortex lattice. In contrast, the rotation of superconductors at angular frequency Omega-supported by uniform magnetic field B-L proportional to Omega due to surface currents-is of the rigid-body type (London law). Here we show that, neglecting the centrifugal effects, the behavior of a rotating superconductor is identical to that of a superconductor placed in a uniform fictitious external magnetic field (H) over tilde = -B-L. In particular, the isomorphism immediately implies the existence of two critical rotational frequencies in type-2 superconductors.

Place, publisher, year, edition, pages
2014. Vol. 89, no 10, 104501- p.
National Category
Other Physics Topics
URN: urn:nbn:se:kth:diva-143685DOI: 10.1103/PhysRevB.89.104501ISI: 000332449000004ScopusID: 2-s2.0-84897894456OAI: diva2:708890
Knut and Alice Wallenberg FoundationSwedish Research Council

QC 20140331

Available from: 2014-03-31 Created: 2014-03-27 Last updated: 2014-03-31Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Babaev, Egor
By organisation
Statistical Physics
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 145 hits
ReferencesLink to record
Permanent link

Direct link