Change search
ReferencesLink to record
Permanent link

Direct link
Effects of N-acetylcysteine on isolated mouse skeletal muscle: contractile properties, temperature dependence, and metabolism
Show others and affiliations
2014 (English)In: Pflügers Archiv: European Journal of Physiology, ISSN 0031-6768, E-ISSN 1432-2013, Vol. 466, no 3, 577-585 p.Article in journal (Refereed) Published
Abstract [en]

The effects of the general antioxidant N-acetylcysteine (NAC) on muscle function and metabolism were examined. Isolated paired mouse extensor digitorum longus muscles were studied in the absence or presence of 20 mM NAC. Muscles were electrically stimulated to perform 100 isometric tetanic contractions (300 ms duration) at frequencies resulting in similar to 85 % of maximal force (70-150 Hz at 25-40 A degrees C). NAC did not significantly affect peak force in the unfatigued state at any temperature but significantly slowed tetanic force development in a temperature-dependent fashion (e.g., time to 50 % of peak tension averaged 35 A +/- 2 ms [control] and 37 A +/- 1 ms [NAC] at 25 A degrees C vs. 21 A +/- 1 ms [control] and 52 A +/- 6 ms [NAC, P < 0.01] at 40 A degrees C). During repeated contractions, NAC maximally enhanced peak force by the fifth tetanus at all temperatures (by similar to 30 %). Thereafter, the effect of NAC disappeared rapidly at high temperatures (35-40 A degrees C) and more slowly at the lower temperatures (25-30 A degrees C). At all temperatures, the enhancing effect of NAC on peak force was associated with a slowing of relaxation. NAC did not significantly affect myosin light chain phosphorylation at rest or after five contractions (similar to 50 % increase vs. rest). After five tetani, lactate and inorganic phosphate increased about 20-fold and 2-fold, respectively, both in control and NAC-treated muscles. Interestingly, after five tetani, the increase in glucose 6-P was similar to 2-fold greater, whereas the increase in malate was inhibited by similar to 75 % with NAC vs. control, illustrating the metabolic effects of NAC. NAC slightly decreased the maximum shortening velocity in early fatigue (five to seven repeated tetani). These data demonstrate that the antioxidant NAC transiently enhances muscle force generation by a mechanism that is independent of changes in myosin light chain phosphorylation and inorganic phosphate. The slowing of relaxation suggests that NAC enhances isometric force by facilitating fusion (i.e., delaying force decline between pulses). The initial slowing of tension development and subsequent slowing of relaxation suggest that NAC would result in impaired performance during a high-intensity dynamic exercise.

Place, publisher, year, edition, pages
2014. Vol. 466, no 3, 577-585 p.
Keyword [en]
Muscle, Force, N-Acetylcysteine, Temperature, Metabolism
National Category
URN: urn:nbn:se:kth:diva-143701DOI: 10.1007/s00424-013-1331-zISI: 000331719400020ScopusID: 2-s2.0-84896734328OAI: diva2:708942
Swedish Research Council

QC 20140331

Available from: 2014-03-31 Created: 2014-03-27 Last updated: 2014-03-31Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Kosterina, Natalia
By organisation
Structural Mechanics
In the same journal
Pflügers Archiv: European Journal of Physiology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 30 hits
ReferencesLink to record
Permanent link

Direct link