Change search
ReferencesLink to record
Permanent link

Direct link
Linear stability of particle laden flows: the influence of added mass, fluid acceleration and Basset history force
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-4346-4732
2014 (English)In: Meccanica (Milano. Print), ISSN 0025-6455, E-ISSN 1572-9648, Vol. 49, no 4, 811-827 p.Article in journal (Refereed) Published
Abstract [en]

Both modal and non-modal linear stability analysis of a channel flow laden with particles is presented. The particles are assumed spherical and solid and their presence modelled using two-way coupling, with Stokes drag, added mass and fluid acceleration as coupling terms. When the particles considered have a density ratio of order one, all three terms become important. To account for the volume and mass of the particles, a modified Reynolds number is defined. Particles lighter than the fluid decrease the critical Reynolds number for modal stability, whereas heavier particles may increase the critical Reynolds number. Most effect is found when the Stokes number defined with the instability time scale is of order one. Non-modal analysis shows that the generation of streamwise streaks is the most dominant disturbance-growth mechanism also in flows laden with particles: the transient growth of the total system is enhanced proportionally to the particle mass fraction, as observed previously in flows laden with heavy particles. When studying the fluid disturbance energy alone, the optimal growth hardly changes. We also show that the Basset history force has a negligible effect on stability. The inclusion of the extra interaction terms does not show any large modifications of the subcritical instabilities in wall-bounded shear flows.

Place, publisher, year, edition, pages
2014. Vol. 49, no 4, 811-827 p.
Keyword [en]
Linear stability analysis, Modal analysis, Non-modal analysis, Particle-laden flows
National Category
Engineering and Technology
URN: urn:nbn:se:kth:diva-144356DOI: 10.1007/s11012-013-9828-2ISI: 000333079300005ScopusID: 2-s2.0-84897020956OAI: diva2:713433

QC 20140423

Available from: 2014-04-23 Created: 2014-04-22 Last updated: 2014-04-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Klinkenberg, JoyBrandt, Luca
By organisation
MechanicsLinné Flow Center, FLOW
In the same journal
Meccanica (Milano. Print)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 23 hits
ReferencesLink to record
Permanent link

Direct link