kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Shear in concrete structures subjected to dynamic loads
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.ORCID iD: 0000-0001-8336-1247
2014 (English)In: Structural Concrete, ISSN 1464-4177, E-ISSN 1751-7648, Vol. 15, no 1, p. 55-65Article in journal (Refereed) Published
Abstract [en]

Shear failures in reinforced concrete structures under intense dynamic loads are brittle and limit the structure's energy-absorbing capabilities. This paper comprises a review of the literature dealing with the problem of dynamic shear of reinforced concrete elements, with a focus on parameters that control flexural shear and direct shear. In this context, dynamic loads refer to intense events due to explosions and impacts. For this reason, the initial response is also highlighted. Experimental investigations and calculations show that shear force and bending moment distributions in dynamic events are initially significantly different from the distributions under slowly applied loads. Therefore, structural wave propagation, geometrical properties of elements, strain rate effects and dynamic load characteristics need to be considered when analysing shear. The review also indicates that arch action in the shear span soon after the load has been applied has a large influence on the shear capacity of an element. This action is of particular importance in intense loading events. Finally, suggestions for further research are identified.

Place, publisher, year, edition, pages
2014. Vol. 15, no 1, p. 55-65
Keywords [en]
dynamic loads, impulsive loads, rise time, shear, initial response, support reactions, arch action, analysis and design methods, testing, experiments, dynamic actions, earthquakes, design and construction
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-144561DOI: 10.1002/suco.201300040ISI: 000332508600008Scopus ID: 2-s2.0-84896787156OAI: oai:DiVA.org:kth-144561DiVA, id: diva2:714091
Note

QC 20140425

Available from: 2014-04-25 Created: 2014-04-24 Last updated: 2024-03-15Bibliographically approved
In thesis
1. Shear in Concrete Structural Elements Subjected to Dynamic Loads
Open this publication in new window or tab >>Shear in Concrete Structural Elements Subjected to Dynamic Loads
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Concrete structural elements subjected to severe dynamic loads such as explosions at close range may cause shear failures. In the Oklahoma City bombing in 1995 two concrete columns on the ground level were reported to have failed in shear. Such shear failures have also been reported to occur in several experimental investigations when concrete beams and slabs were subjected to blast or impact loads. The dynamic shear mechanisms are not yet fully understood and it is therefore of research significance to further investigate these mechanisms. The main objective of the research presented in this thesis is to experimentally and theoretically analyse shear failures of reinforced concrete elements subjected to uniformly distributed dynamic loads.

The experimental work consisted of concrete beams of varying concrete grades and reinforcement configurations subjected to blast loads. One series involved testing of steel fibre reinforced concrete (SFRC) beams and the other series involved tests with concrete beams reinforced with steel bars. The former investigation showed that SFRC beams can resist certain blast loads. In the latter investigation, certain beams subjected to blast loads were observed to fail in flexural shear while the same beams exhibited flexural failures in the static tests. Such shear failures specifically occurred in beams with relatively high reinforcement contents. With these experiments as reference, numerical simulations with Ansys Autodyn were performed that demonstrated the ability to predict flexural shear failures.

A direct shear failure mode has also been observed in experiments involving concrete roofs subjected to intense distributed blast loads. In several cases, the roof slabs were completely severed from their supporting walls along vertical or near-vertical failure planes soon after the load had been applied. Theoretical analyses of the initial structural response of beams subjected to distributed loads were conducted with the use of Euler-Bernoulli beam theory and numerical simulations in Abaqus/Explicit. These analyses show that the initial structural response consists of shear stresses and bending moments developing at the supports. The remaining parts of the beam will be subjected to a rigid body motion. Further simulations with Abaqus shows that that dynamic direct shear failure appears to be due to a deep beam response with crushing of the compressive struts at the supports, and therefore differs from a static direct shear mode. The results also showed that parameters such as element depth, amount of reinforcement, load level and load duration played a role in developing a dynamic direct shear failure.

Abstract [sv]

Byggnadselement i betong utsatta för stora dynamiska laster som explosioner på nära håll kan förorsaka skjuvbrott. I bombådet i Oklahoma City 1995 rapporterades att två betongpelare i marknivå gick till skjuvbrott. Sådana skjuvbrott har observerats i flera experimentella undersökningar med betongbalkar eller plattor som utsattes för explosionslaster eller anslag från fallande föremål. Mekanismerna bakom dynamisk skjuvning är ännu inte helt klarlagda och det är därför av intresse att utforska dessa mekanismer. Huvudsyftet med forskningen i föreliggande avhandling är att experimentellt och teoretiskt analysera skjuvbrott i armerade betongelement utsatta för jämnt utbredd dynamisk last.

Den experimentella delen av forskningen bestod av betongbalkar med varierande betonghållfasthet and armeringsutformning utsatta för explosionslaster. En försöksserie omfattades av stålfiberarmerade balkar och den andra av betongbalkar med armeringsstänger. Den förra undersökningen visade att de fiberarmerade balkarna kan bära en viss explosionslast. I den senare undersökningen observerades att de balkar som utsattes för explosionslast och gick till böjskjuvbrott medans samma balkar gick till böjbrott i de statiska försöken. Skjuvbrotten uppstod i balkar med relativt höga armeringsinnehåll. Dessa balkar användes senare som referensbalkar för numeriska simuleringar med Ansys Autodyn där simuleringarna visade på möjligheten att förutsäga böjskjuvbrott.

Även direkt skjuvning har observerats i experiment med betongtak utsatta för höga explosionslaster. I flera fall separerades taken från de stöttande väggarna längs vertikala eller nära vertikala brottytor kor tid efter pålastningen. Teoretiska analyser av den tidiga strukturresponsen för balkar utsatta för utbredda laster genomfördes med Euler-Bernoulli balkteori och numeriska simuleringar med Abaqus/Explicit. Dessa analyser visar att den initiala strukturresponsen består av skjuvspänningar och böjande moment som uppstår vid stöden. Områdena på balken från nära stöd mot balkmitt rör sig i form av en stelkropp. Vid ytterligare simuleringar med Abaqus förefaller ett dynamiskt direkt skjuvbrott vara resultatet av en respons likt en hög balk med krossning av de tryckta strävorna vid stöden, och därmed skiljer sig från statisk direkt skjuvning. Resultaten visar även att balkhöjd, armeringsinnehåll, lastnivå och lastens varaktighet är parametrar som påverkade utvecklingen av ett dynamiskt direkt skjuvbrott.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 160
Series
TRITA-ABE-DLT ; 1916
Keywords
Dynamic load, initial response, shear failure, shear capacity, numerical simulations, bond, shear span, support reactions, Dynamisk last, initial respons, skjuvbrott, skjuvkapacitet, numeriska simuleringar, förankring, skjuvspännvidd, upplagsreaktioner
National Category
Civil Engineering
Research subject
Civil and Architectural Engineering
Identifiers
urn:nbn:se:kth:diva-251108 (URN)978-91-7873-229-6 (ISBN)
Public defence
2019-06-05, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20190509

Available from: 2019-05-09 Created: 2019-05-09 Last updated: 2022-09-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Magnusson, JohanHallgren, MikaelAnsell, Anders

Search in DiVA

By author/editor
Magnusson, JohanHallgren, MikaelAnsell, Anders
By organisation
Concrete Structures
In the same journal
Structural Concrete
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 660 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf