Change search
ReferencesLink to record
Permanent link

Direct link
In Search of Flexible Molecular Wires with Near Conformer-Independent Conjugation and Conductance: A Computational Study
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
Show others and affiliations
2014 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 118, no 11, 5637-5649 p.Article in journal (Refereed) Published
Abstract [en]

Oligomers of 1,4-disila/germa/stannacyclohexa-2,5-dienes as well as all-carbon 1,4-cyclohexadienes connected via E-E single bonds (E = C, Si, Ge, or Sn) were studied through quantum chemical calculations in an effort to identify conformationally flexible molecular wires that act as molecular "electrical cords" hang conformer-independent conjugative and conductive properties. Our oligomers display neutral hyperconjugative interactions (sigma/pi-conjugation) between adjacent sigma(E-E) and pi(C=C) bond orbitals, and these interactions do not change with conformation. The energies and spatial distributions of the highest occupied molecular orbitals of methyl-, silyl-, and trimethylsilyl (TMS)-substituted 1,4-disilacyclohexa-2,5-diene dimers, and stable conformers of trimers and tetramers, remain rather constant upon Si-Si bond rotation. Yet, steric congestion may be a concern in some of the oligomer types. The calculated conductances for the Si-containing tetramers are similar to that of a sigma-conjugated linear all-anti oligosilane (a hexadecasilane) with equally many bonds in the conjugated paths. Moreover, the Me-substituted 1,4-disilacyclohexadiene tetramer has modest conductance fluctuations with Si-Si bond rotations when the electrode-electrode distance is locked (variation by factor similar to 30), while the fluctuations under similar conditions are larger for the analogous TMS-substituted tetramer. When the electrode-electrode distance is changed several oligomers display small conductance variations within certain distance intervals, e.g., the mean conductance of TMS-substituted 1,4-disilacyclohexa-2,5-diene tetramer is almost unchanged over 9 A of electrode-electrode distances.

Place, publisher, year, edition, pages
2014. Vol. 118, no 11, 5637-5649 p.
Keyword [en]
Main-Group Thermochemistry, Density-Functional Theory, Noncovalent Interactions, Cross-Hyperconjugation, Excitation-Energies, Matrix-Isolation, Building-Block, Silicon, Gold, Approximation
National Category
Physical Chemistry
URN: urn:nbn:se:kth:diva-144538DOI: 10.1021/jp409767rISI: 000333381300003ScopusID: 2-s2.0-84897831714OAI: diva2:714435
Swedish Research CouncilCarl Tryggers foundation Swedish Energy AgencySwedish Foundation for Strategic Research

QC 20140428

Available from: 2014-04-28 Created: 2014-04-24 Last updated: 2014-04-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Ahuja, Rajeev
By organisation
Applied Material Physics
In the same journal
The Journal of Physical Chemistry C
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 20 hits
ReferencesLink to record
Permanent link

Direct link