Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The impact of climate targets on future steel production - an analysis based on a global energy system model
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.ORCID iD: 0000-0002-3618-1259
Vision on Technology (VITO) and Joint Research Centre of the European Commission.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.ORCID iD: 0000-0001-7123-1824
2014 (English)In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 103, 469-482 p.Article in journal (Refereed) Published
Abstract [en]

This paper addresses how a global climate target may influence iron and steel production technology deployment and scrap use. A global energy system model, ETSAP-TIAM, was used and a Scrap Availability Assessment Model (SAAM) was developed to analyse the relation between steel demand, recycling and the availability of scrap and their implications for steel production technology choices. Steel production using recycled materials has a continuous growth and is likely to be a major route for steel production in the long run. However, as the global average of in-use steel stock increases up to the current average stock of the industrialised economies, global steel demand keeps growing and stagnates only after 2050. Due to high steel demand levels and scarcity of scrap, more than 50% of the steel production in 2050 will still have to come from virgin materials. Hydrogen-based steel production could become a major technology option for production from virgin materials, particularly in a scenario where Carbon Capture and Storage (CCS) is not available. Imposing a binding climate target will shift the crude steel price to approximately 500 USD per tonne in the year 2050, provided that CCS is available. However, the increased prices are induced by COprices rather than inflated production costs. It is concluded that a global climate target is not likely to influence the use of scrap, whereas it shall have an impact on the price of scrap. Finally, the results indicate that energy efficiency improvements of current processes will only be sufficient to meet the climate target in combination with CCS. New innovative techniques with lower climate impact will be vital for mitigating climate change.

Place, publisher, year, edition, pages
Elsevier, 2014. Vol. 103, 469-482 p.
Keyword [en]
ETSAP-TIAM, SAAM, steel production, technology choice, climate change
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:kth:diva-144837DOI: 10.1016/j.jclepro.2014.04.045ISI: 000356990800045Scopus ID: 2-s2.0-84899780306OAI: oai:DiVA.org:kth-144837DiVA: diva2:714689
Note

QC 20150708

Available from: 2014-04-29 Created: 2014-04-29 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Tracking Emissions Reductions and Energy Efficiency in the Steel Industry
Open this publication in new window or tab >>Tracking Emissions Reductions and Energy Efficiency in the Steel Industry
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The iron and steel industry has become increasingly globalised. Market conditions are also changing and de-carbonisation of production is challenging.

The objective of this thesis is to assess how energy efficiency and greenhouse gas emissions reductions can be promoted and effectively monitored in the steel industry. The thesis contributes with analyses based on the Malmquist Productivity Index for a top-down analysis of the energy efficiency of EU Member States’ iron and steel production, and Partial Least Squares regression for bottom-up assessments of different monitoring tools. The thesis also contributes with a scrap availability assessment module to enhance the energy system model ETSAP-TIAM.

The first phase of the research showed that future production needs to shift towards innovative low-CO2 technologies even when all available recycled material is fully used. Techniques using carbon capture and storage (CCS) as well as hydrogen-based technologies can be expected to become economically viable under tightened climate policies.

The second phase of the research showed that current indicators are insufficient. System boundaries of energy use and emissions data do not align with production statistics. Indicators based on energy use or emissions in relation to production in physical terms may be useful to track specific processes. However, current indicators fail to reflect the companies’ product mix. Enhanced energy and climate indicators that adjust for the product mix provide better estimates while failing to reflect the increasing globalisation.

Effective monitoring of industrial transformation will be increasingly important as pressure from climate policy via global CO2-pricing is unlikely in the short term. Current or enhanced indicators do not fully capture industrial transformation and are not recommended. Future research should focus on defining indicators to estimate energy use and emissions along industrial value chains in climate policy contexts.

Abstract [sv]

Järn- och stålindustrin har blivit alltmer globaliserad. Marknadsvillkoren förändras samtidigt som utfasningen av fossila bränslen är utmanande.

Målet med den här avhandlingen är att bedöma hur energieffektivitet och växthusgasutsläppsminskningar kan främjas och effektivt utvärderas inom stålindustrin. Avhandlingen bidrar med analyser baserade Malmquists produktivitetsindex för att analysera energieffektivitet av EU:s medlemsstaters järn- och stålproduktion, och partiell minsta- kvadrat-regression för att bedöma olika utvärderingsmått. Avhandlingen bidrar även med en modul som bedömer skrottillgång för att förbättra energisystemmodellen ETSAP-TIAM.

I en första fas visade forskningen att framtida produktion behöver ställas om mot innovativa teknologier med låga CO2-utsläpp även när allt tillgängligt återvunnet material används fullt ut. Tekniker som använder koldioxidinfångning och -lagring (CCS) samt vätebaserade teknologier kan förväntas bli ekonomiskt försvarbara under åtstramade klimatpolitiska styrmedel.

I en andra fas visade forskningen att nuvarande indikatorer är otillräckliga. Systemgränser för energianvändnings- och växthusgasutsläppsdata stämmer inte överens med produktionsstatistik. Indikatorer utifrån energianvändning eller utsläpp i relation till fysisk produktion kan vara användbara för att följa upp specifika processer. Nuvarande indikatorer lyckas dock inte spegla företagens produktmix. Förbättrade energi- och klimatindikatorer som justerar för produktmixen ger bättre uppskattningar, men speglar inte branschens ökande globalisering.

Effektiv utvärdering av industriell transformation blir alltmer viktig då påtryckning från klimatpolitiska styrmedel via global CO2-prissättning är kortsiktigt osannolik. Nuvarande eller förbättrade indikatorer fångar inte industriell transformation fullt ut och rekommenderas inte. Framtida forskning bör fokusera på att definiera indikatorer som uppskattar energianvändning och växthusgasutsläpp längs industriella värdekedjor. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2017. 98 p.
Series
TRITA-ECS Report, 17/01
Keyword
energy efficiency, greenhouse gas emissions reductions, indicators, iron and steel industry, systems analysis, energieffektivitet, växthusgasutsläppsminskning, indikatorer, järn- och stålbranschen, systemanalys
National Category
Energy Systems
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-205882 (URN)978-91-7729-382-8 (ISBN)
Public defence
2017-06-02, Kollegiesalen, Brinellvägen 8, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20170428

Available from: 2017-04-28 Created: 2017-04-28 Last updated: 2017-04-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopusScience direct

Authority records BETA

Morfeldt, JohannesSilveira, Semida

Search in DiVA

By author/editor
Morfeldt, JohannesSilveira, Semida
By organisation
Energy and Climate Studies, ECS
In the same journal
Journal of Cleaner Production
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 132 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf