Change search
ReferencesLink to record
Permanent link

Direct link
A Single-Cell Study of a Highly Effective Hog1 Inhibitor for in Situ Yeast Cell Manipulation
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.ORCID iD: 0000-0001-6782-6622
Show others and affiliations
2014 (English)In: Micromachines, ISSN 2072-666X, Vol. 5, no 1, 81-96 p.Article in journal (Refereed) Published
Abstract [en]

We present a single cell study of a highly effective Hog1 inhibitor. For this application, we used sequential treatment of a Saccharomyces cerevisiae cell array, with the Hog1 inhibitor and osmotic stress. For this purpose, a four-inlet microfluidic chamber with controlled introduction of two different cell strains within the same experimental setting and a subsequent rapid switching between treatments was designed. Multiple cell strains within the same experiment is a unique feature which is necessary for determining the expected absent cellular response. The nuclear translocation of the cytosolic MAPK, Hog1, was monitored by fluorescence imaging of Hog1-GFP on a single-cell level. An optical tweezers setup was used for controlled cell capture and array formation. Nuclear Hog1-GFP localization was impaired for treated cells, providing evidence of a congenial microfluidic setup, where the control cells within the experiments validated its appropriateness. The chamber enables multiple treatments with incubation times in the order of seconds and the possibility to remove either of the treatments during measurement. This flexibility and the possibility to use internal control cells ensures it a valuable scientific tool for unraveling the HOG pathway, similar signal transduction pathways and other biological mechanisms where temporal resolution and real time imaging is a prerequisite.

Place, publisher, year, edition, pages
2014. Vol. 5, no 1, 81-96 p.
Keyword [en]
microfluidics, single-cell analysis, MAPK, inhibitor, optical trapping, cell-to-cell variability, system biology, Saccharomyces cerevisiae, HOG, optical tweezers
National Category
Nano Technology
URN: urn:nbn:se:kth:diva-144960DOI: 10.3390/mi5010081ISI: 000333674700006ScopusID: 2-s2.0-84902581358OAI: diva2:715380
Swedish Research CouncilCarl Tryggers foundation

QC 20140505

Available from: 2014-05-05 Created: 2014-05-05 Last updated: 2014-07-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Dinér, Peter
By organisation
Organic Chemistry
In the same journal
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 20 hits
ReferencesLink to record
Permanent link

Direct link