Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impact of the flame retardant additive triphenyl phosphate (TPP) on the performance of graphite/LiFePO4 cells in high power applications
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0003-2112-6115
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
Show others and affiliations
2014 (English)In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 256, 430-439 p.Article in journal (Refereed) Published
Abstract [en]

This study presents an extensive characterization of a standard Li-ion battery (LiB) electrolyte containing different concentrations of the flame retardant triphenyl phosphate (TPP) in the context of high power applications. Electrolyte characterization shows only a minor decrease in the electrolyte flammability for low TPP concentrations. The addition of TPP to the electrolyte leads to increased viscosity and decreased conductivity. The solvation of the lithium ion charge carriers seem to be directly affected by the TPP addition as evidenced by Raman spectroscopy and increased mass-transport resistivity. Graphite/LiFePO4 full cell tests show the energy efficiency to decrease with the addition of TPP. Specifically, diffusion resistivity is observed to be the main source of increased losses. Furthermore, TPP influences the interface chemistry on both the positive and the negative electrode. Higher concentrations of TPP lead to thicker interface layers on LiFePO4. Even though TPP is not electrochemically reduced on graphite, it does participate in SEI formation. TPP cannot be considered a suitable flame retardant for high power applications as there is only a minor impact of TPP on the flammability of the electrolyte for low concentrations of TPP, and a significant increase in polarization is observed for higher concentrations of TPP.

Place, publisher, year, edition, pages
2014. Vol. 256, 430-439 p.
Keyword [en]
Triphenyl phosphate (TPP), Flame retardant additive, Graphite/LiFePO4 cell, Electrolyte characterization, Hybrid Pulse Power Characterization (HPPC), Electrode/electrolyte interface
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-144920DOI: 10.1016/j.jpowsour.2014.01.022ISI: 000333724100057Scopus ID: 2-s2.0-84894204241OAI: oai:DiVA.org:kth-144920DiVA: diva2:716084
Funder
StandUp
Note

QC 20140508

Available from: 2014-05-08 Created: 2014-05-05 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Thermal Aspects and Electrolyte Mass Transport in Lithium-ion Batteries
Open this publication in new window or tab >>Thermal Aspects and Electrolyte Mass Transport in Lithium-ion Batteries
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Temperature is one of the most important parameters for the performance, safety, and aging of lithium-ion batteries and has been linked to all main barriers for widespread commercial success of electric vehicles.

The aim of this thesis is to highlight the importance of temperature effects, as well as to provide engineering tools to study these.

The mass transport phenomena of the electrolyte with LiPF6  in EC:DEC was fully characterized in between 10 and 40 °C and 0.5 and 1.5 M, and all mass transport properties were found to vary strongly with temperature.

A superconcentrated electrolyte with LiTFSI in ACN was also fully characterized at 25 °C, and was found to have very different properties and interactions compared to LiPF6  in EC:DEC.

The benefit of using the benchmarking method termed electrolyte masstransport resistivity (EMTR) compared to using only ionic conductivity was illustrated for several systems, including organic liquids, ionic liquids, solid polymers, gelled polymers, and electrolytes containing flame-retardant additives.

TPP, a flame-retardant electrolyte additive, was evaluated using a HEV load cycle and was found to be unsuitable for high-power applications such as HEVs.

A large-format commercial battery cell with a thermal management system was characterized using both experiments and a coupled electrochemical and thermal model during a PHEV load cycle. Different thermal management strategies were evaluated using the model, but were found to have only minor effects since the limitations lie in the heat transfer of the jellyroll.

Abstract [sv]

Temperatur är en av de viktigaste parametrarna gällande ett litiumjonbatteris prestanda, säkerhet och åldring och har länkats till de främsta barriärerna för en storskalig kommersiell framgång för elbilar.

Syftet med den här avhandlingen är att belysa vikten av temperatureffekter, samt att bidra med ingenjörsverktyg att studera dessa.

Masstransporten för elektrolyten LiPF6  i EC:DEC karakteriserades fullständigt i temperaturintervallet 10 till 40 °C för LiPF6-koncentrationer på 0.5 till 1.5 M. Alla masstransport-egenskaper fanns variera kraftigt med temperaturen.

Den superkoncentrerade elektrolyten med LiTFSI i ACN karakteriserades även den fullständigt vid 25 °C. Dess egenskaper och interaktioner fanns vara väldigt annorlunda jämfört med LiPF6  i EC:DEC.

Fördelen med att använda utvärderingsmetoden elektrolytmasstransportresistivitet (EMTR) jämfört med att endast mäta konduktivitet illustrerades för flertalet system, däribland organiska vätskor, jonvätskor, fasta polymerer, gellade polymerer, och elektrolyter

med flamskyddsadditiv.

Flamskyddsadditivet TPP utvärderades med en hybridbils-lastcykel och fanns vara olämplig för högeffektsapplikationer, som hybridbilar.

Ett kommersiellt storformatsbatteri med ett temperatur-kontrollsystem karakteriserades med b.de experiment och en kopplad termisk och elektrokemisk modell under en lastcykel utvecklad för plug-inhybridbilar. Olika strategier för kontroll av temperaturen utvärderades, men fanns bara ha liten inverkan på batteriets temperatur då begränsningarna för värmetransport ligger i elektrodrullen, och inte i batteriets metalliska ytterhölje.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. 60 p.
Series
TRITA-CHE-Report, ISSN 1654-1081 ; 2015:22
Keyword
Energy storage, Lithium-ion batteries, Electrolytes, Temperature, Modeling, Hybrid electric vehicle, Plug-in hybrid electric vehicle
National Category
Chemical Engineering
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-166857 (URN)978-91-7595-584-1 (ISBN)
Public defence
2015-06-11, D2, Lindstedtsvägen 5, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Projects
Swedish Hybrid Vehicle Center
Note

QC 20150522

Available from: 2015-05-22 Created: 2015-05-20 Last updated: 2016-02-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Lundgren, HenrikBehm, MårtenLindbergh, Göran

Search in DiVA

By author/editor
Lundgren, HenrikZavalis, Tommy G.Behm, MårtenLindbergh, Göran
By organisation
Applied Electrochemistry
In the same journal
Journal of Power Sources
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 141 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf