Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Iron( III)-Quantity-Dependent Aggregation-Dispersion Conversion of Functionalized Gold Nanoparticles
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.ORCID iD: 0000-0001-6508-8355
Show others and affiliations
2014 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 20, no 14, 4032-4037 p.Article in journal (Refereed) Published
Abstract [en]

Developing gold nanoparticles (AuNPs) with well-designed functionality is highly desirable for boosting the performance and versatility of inorganic-organic hybrid materials. In an attempt to achieve ion recognition with specific signal expressions, we present here 4-piperazinyl-1,8-naphthalimide-functionalized AuNPs for the realization of quantitative recognition of Fe-III ions with dual (colorimetric and fluorescent) output. The research takes advantage of 1)quantity-controlled chelation-mode transformation of the piperazinyl moiety on the AuNPs towards Fe-III, thereby resulting in an aggregation-dispersion conversion of the AuNPs in solution, and 2)photoinduced electron transfer of a naphthaimide fluorophore on the AuNPs, thus leading to reversible absorption and emission changes. The functional AuNPs are also responsive to pH variations. This strategy for realizing the aggregation-dispersion conversion of AuNPs with returnable signal output might exhibit application potential for advanced nanoscale chemosensors.

Place, publisher, year, edition, pages
2014. Vol. 20, no 14, 4032-4037 p.
Keyword [en]
gold, iron, nanoparticles, sensors, surface plasmon resonance
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-144931DOI: 10.1002/chem.201303958ISI: 000333447200022Scopus ID: 2-s2.0-84897916341OAI: oai:DiVA.org:kth-144931DiVA: diva2:716099
Note

QC 20140508

Available from: 2014-05-08 Created: 2014-05-05 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Li, XinÅgren, Hans

Search in DiVA

By author/editor
Li, XinÅgren, Hans
By organisation
Theoretical Chemistry and Biology
In the same journal
Chemistry - A European Journal
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 62 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf