Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Combined ion micro probe and SEM analysis of strongly non uniform deposits in fusion devices
KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
Show others and affiliations
2015 (English)In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, ISSN 0168-583X, E-ISSN 1872-9584, Vol. 342, 19-28 p.Article in journal (Refereed) Published
Abstract [en]

Conventional ion beam analysis (IBA) of deposited layers from fusion devices may have insufficient accuracy due to strongly uneven appearance of the layers. Surface roughness and spatial variation of the matrix composition make interpretation of broad beam spectra complex and non obvious. We discuss complications of applied IBA arising for fusion-relevant surfaces and demonstrate how quantification can be improved by employing micro IBA methods. The analysis is bound to pre-defined regions on the sample surface and can be extended by employing beams of several types, scanning electron microscopy (SEM) and stereo SEM techniques.

Place, publisher, year, edition, pages
2015. Vol. 342, 19-28 p.
Keyword [en]
Ion micro probe, Micro NRA, PIXE, Plasma-facing components, Deuterium retention
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-145076DOI: 10.1016/j.nimb.2014.08.019ISI: 000347770500004OAI: oai:DiVA.org:kth-145076DiVA: diva2:716165
Note

Updated from submitted to published.

QC 20150227

Available from: 2014-05-08 Created: 2014-05-08 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Experimental studies of materials migration in magnetic confinement fusion devices: Novel methods for measurement of macro particle migration, transport of atomic impurities and characterization of exposed surfaces
Open this publication in new window or tab >>Experimental studies of materials migration in magnetic confinement fusion devices: Novel methods for measurement of macro particle migration, transport of atomic impurities and characterization of exposed surfaces
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

During several decades of research and development in the field of Magnetically Confined Fusion (MCF) the preferred selection of materials for Plasma Facing Components (PFC) has changed repeatedly. Without doubt, endurance of the first wall will decide research availability and lifespan of the first International Thermonuclear Research Reactor (ITER). Materials erosion, redeposition and mixing in the reactor are the critical processes responsible for modification of materials properties under plasma impact. This thesis presents several diagnostic techniques and their applications for studies of materials transport in fusion devices. The measurements were made at the EXTRAP T2R Reversed Field Pinch operated in Alfvén laboratory at KTH (Sweden), the TEXTOR tokamak, recently shut down at Forschungszentrum Jülich (Germany) and in the JET tokamak at CCFE (UK). The main outcomes of the work are:

  • Development and application of a method for non-destructive capture and characterization of fast dust particles moving in the edge plasma of fusion devices, as well as particles generated upon laser-assisted cleaning of plasma exposed surfaces. 
  • Advancement of conventional broad beam and micro ion beam techniques to include measurement of tritium in the surfaces exposed in future D-T experiments. 
  • Adaption of the micro ion beam method for precision mapping of non uniform elements concentrations on irregular surfaces. 
  • Implementation of an isotopic marker to study the large scale materials migration in a tokamak and development of a method for fast non destructive sampling of the marker on surfaces of PFCs.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. iv, 84 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2014:024
Keyword
fusion, tokamak, RFP, divertor, limiter, SOL, transport, migration, surface analysis, IBA, ion micro beam, beryllium, tritium
National Category
Fusion, Plasma and Space Physics
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-145045 (URN)978-91-7595-147-8 (ISBN)
Public defence
2014-05-16, F3, Lindstedsvägen 26, KTH, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20140508

Available from: 2014-05-08 Created: 2014-05-07 Last updated: 2014-05-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Bykov, IgorBergsåker, HenricPetersson, Per
By organisation
Fusion Plasma Physics
In the same journal
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 75 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf