Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling of flexible pavement structure behavior - Comparisons with Heavy Vehicle Simulator measurements
KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering. Swedish National Road and Transport Research Institute, Pavement Technology, VTI, Linköping, Sweden .
Swedish National Road and Transport Research Institute, Pavement Technology, VTI, Linköping, Sweden .
2012 (English)In: Advances in Pavement Design Through Full-Scale Accelerated Pavement Testing - Proceedings of the 4th International Conference on Accelerated Pavement Testing, 2012, 493-503 p.Conference paper, Published paper (Refereed)
Abstract [en]

A response model to be employed in a mechanistic-empirical pavement performance prediction model based on multilayer elastic theory has been developed.An iterative approach using a method of successive over-relaxation of a stress dependency model is used to account for the nonlinear behavior of unbound materials. Asphalt and subgrade materials are assumed to be linear elastic. The response model was verified against two series of Heavy Vehicle Simulator (HVS) response measurements made under a variety of wheel load configurations and at different pavement temperatures.A comparison with FallingWeight Deflectometer (FWD) data was also carried out. The model was subsequently used to predict permanent deformation from the HVS testing using simplework hardening models.Atime hardening approach has been adopted to combine permanent deformation contributions from stress levels of different magnitude.The response model outputs and the predicted permanent deformations were generally in good agreement with the measurements.

Place, publisher, year, edition, pages
2012. 493-503 p.
Keyword [en]
Deflectometers, Dependency model, Flexible pavement structure, Heavy vehicle simulators, Iterative approach, Linear elastic, Multi-layer elastic theory, Nonlinear behavior, Pavement performance, Permanent deformations, Response measurement, Response model, Stress levels, Subgrade materials, Successive over relaxation, Unbound materials, Wheel loads
National Category
Civil Engineering
Identifiers
URN: urn:nbn:se:kth:diva-145139Scopus ID: 2-s2.0-84866890937ISBN: 978-041562138-0 (print)OAI: oai:DiVA.org:kth-145139DiVA: diva2:716724
Conference
4th International Conference on Accelerated Pavement Testing, APT 2012; Davis, CA; United States; 19 September 2012 through 21 September 2012
Note

QC 20140512

Available from: 2014-05-12 Created: 2014-05-12 Last updated: 2014-09-19Bibliographically approved
In thesis
1. Mechanistic-Empirical Modelling of Flexible Pavement Performance: Verifications Using APT Measurements
Open this publication in new window or tab >>Mechanistic-Empirical Modelling of Flexible Pavement Performance: Verifications Using APT Measurements
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Mechanistic-Empirical  (M-E)  pavement  design  procedures  are  composed  of  a  reliable  response model to estimate the state of stress in the pavement and distress models in order to predict the different types of pavement distresses due to the prevailing traffic and environmental conditions. One of the main objectives of this study was to develop a response model based on multilayer elastic  theory   (MLET)  with  improved  computational  performance  by   optimizing  the   time consuming parts of the MLET processes. A comprehensive comparison of the developed program with  two  widely  used  programs  demonstrated  excellent  agreement  and  improved  computational performance.  Moreover,  the  program  was  extended  to  incorporate  the  viscoelastic  behaviour  of bituminous materials through elastic-viscoelastic correspondence principle. A procedure based on collocation of linear viscoelastic (LVE) solutions at selected key time durations was also proposed that improved the computational performance for LVE analysis of stationary and moving loads. A comparison  of  the  LVE  responses  with  measurements  from  accelerated  pavement  testing  (APT) revealed a good agreement. Furthermore the developed response model was employed to evaluate permanent deformation models  for  bound  and  unbound  granular  materials  (UGMs)  using  full  scale  APTs.  The  M-E Pavement  Design  Guide  (MEPDG)  model  for  UGMs  and  two  relatively  new  models  were evaluated  to  model  the  permanent  deformation  in  UGMs.  Moreover,  for  bound  materials,  the simplified  form  of  the  MEPDG  model  for  bituminous  bound  layers  was  also  evaluated.  The measured  and  predicted  permanent  deformations  were  in  general  in  good  agreement,  with  only small discrepancies between the models. Finally, as heavy traffic loading is one of the main factors affecting the performance of flexible pavement, three types of characterizations for heavy traffic axle load spectrum for M-E analysis and design of pavement structures were evaluated. The study recommended an improved approach that enhanced the accuracy and computational performance. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. x, 60 p.
Series
TRITA-TSC-PHD, 14:003
Keyword
Flexible Pavement; Pavement Performance Models; Multilayer Elastic Theory; Linear Viscoelasticity; Rutting; Accelerated Pavement Testing; Heavy Vehicle Simulator
National Category
Infrastructure Engineering
Research subject
Transport Science; Civil and Architectural Engineering
Identifiers
urn:nbn:se:kth:diva-145136 (URN)978-91-87353-39-0 (ISBN)
Public defence
2014-05-23, Q2, Osquldas väg 10, KTH, Stockholm, 13:30 (English)
Opponent
Supervisors
Note

QC 20140512

Available from: 2014-05-12 Created: 2014-05-12 Last updated: 2014-05-19Bibliographically approved

Open Access in DiVA

No full text

Scopus

Search in DiVA

By author/editor
Ahmed, Abubeker W.Erlingsson, Sigurdur
By organisation
Highway and Railway Engineering
Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 178 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf