Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Establishing α-bromo-γ-butyrolactone as a platform for synthesis of functional aliphatic polyesters-bridging the gap between ROP and SET-LRP
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.ORCID iD: 0000-0001-6044-586X
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.ORCID iD: 0000-0002-5850-8873
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
2014 (English)In: Polymer Chemistry, ISSN 1759-9954, E-ISSN 1759-9962, Vol. 5, no 12, 3847-3854 p.Article in journal (Refereed) Published
Abstract [en]

Utilizing a-bromo-g-butyrolactone (aBrgBL) as a comonomer with 3-caprolactone (3CL) or L-lactide (LLA)produces copolymers with active and available grafting sites, e.g., for SET-LRP, where the choice of thegrafting monomers is limited only by one's imagination. This was deduced by utilizing a wide range ofdifferent acrylates of varying polarities and was realized with the aid of a fluorinated alcohol, 2,2,2-trifluoroethanol, which acts as a universal solvent for both the hydrophobic macroinitiators and thegrafting monomers. Using aBrgBL successfully provides a simple route to merge the two polymerizationmethodologies, ROP and SET-LRP. aBrgBL inherently meets all of the prerequisites to act as a platformmonomer for the synthesis of functional aliphatic polyesters, i.e., it is inexpensive, available, and able toform isolated grafting sites along the polymer chain. The copolymerization of aBrgBL together with twoof the most commonly used cyclic ester monomers, 3-CL and LLA, proceeds with a high degree ofcontrol and a linear relationship between the feed ratio of aBrgBL and its composition in the copolymer.The formation of isolated units of aBrgBL in the copolymer is visualized by the reactivity ratios of thecopolymerization reactions and confirmed by 13C-NMR spectroscopy. The incorporation of isolatedaBrgBL is the feature that makes this class of copolymers unique, and it can be considered to provide aroute to the “perfect graft copolymer” with a degradable backbone.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2014. Vol. 5, no 12, 3847-3854 p.
National Category
Polymer Technologies
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-145189DOI: 10.1039/C4PY00148FISI: 000336804800015Scopus ID: 2-s2.0-84901352273OAI: oai:DiVA.org:kth-145189DiVA: diva2:717131
Note

QC 20140627

Available from: 2014-05-14 Created: 2014-05-14 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Functional Degradable Polymers by a Radical Chemistry approach
Open this publication in new window or tab >>Functional Degradable Polymers by a Radical Chemistry approach
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

One class of polymers that is inherently of great value for many applications is the aliphatic polyesters. Such polymers are very suitable for use as temporary guides, scaffolds, for tissue formation and other biomedical applications, due to their biocompatibility, degradability and appropriate mechanical properties. A prominent way to incorporate sites that allow alterations and modifications of the polymer backbone could be by copolymerization of functional monomers. The focus in this thesis is the development of new monomers and subsequent polymers bestowed with functional groups.

Radical ring-opening polymerization (RROP) of cyclic ketene acetals through a free-radical mechanism presents an alternative route to conventional ring-opening polymerization for the synthesis of aliphatic polyesters. By RROP, it is possible to incorporate ester functionality into the backbone of non-degradable polymers by copolymerize cyclic ketene acetals with vinyl monomers.

The possibility of creating materials with high degree of functionality is achieved by copolymerization with other and possible functional monomers. Three different copolymerizations including cyclic ketene acetals were performed. First, to increase hydrophilicity of a hydrophobic polymer by copolymerization of two cyclic ketene acetals, 2-methylene-1,3,6-trioxocane (MTC) and 2-methylene-1,3-dioxepane (MDO). Second, to introduce degradability into a non-degradable backbone by copolymerize MDO and vinyl acetal (VAc). Subsequently, the acetate side-group was hydrolyzed into the more hydrophilic alcohol group. Third, to introduce reactive functionalities into the degradable backbone of poly(2-methylene-1,3-dioxepane) (PMDO), by copolymerize MDO and glycidyl methacrylate (GMA). The epoxide side-groups, originating from GMA, were subsequently used in post-polymerization reactions by coupling with the bioactive molecule heparin.

The degradability of this class of copolymers was evaluated using the MDO/GMA-based material as model, showing that the materials degrade during 133 days without a rapid release of acidic degradation products or any substantial lowering of the pH. Methylthiazol tetrazolium (MTT) assays were also performed to confirm the innocuousness of the material. The results from the degradation study together with the MTT assays showed that these materials would be interesting for use in biomedical applications.

Finally, a combination of controlled radical polymerization with controlled ring-opening polymerization was performed. α-Bromo-γ-butyrolactone (αBrγBL) together with ε-caprolactone (εCL) or L-lactide (LLA) was successfully copolymerized to achieve copolymers with active and available grafting sites for single electron transfer living radical polymerization (SET-LRP). Different acrylates, ranging from the hydrophobic n-butyl acrylate and methyl methacrylate to the hydrophilic 2-hydroxyethyl methacrylate, were subsequently grafted via SET-LRP. All designated acrylate monomers were successfully grafted onto the polymer backbone, thereby emphasizing the versatility and ability of αBrγBL to act as a bridge between SET-LRP and ROP for a wide range of monomers.

Abstract [sv]

De alifatiska polyestrarna är en klass polymerer som är av stort intresse för många applikationer. Dessa polymerer är mycket lämpade att använda som temporära guider, scaffolds, för vävnadsregenerering och andra biomedicinska applikationer, på grund av sin biokompatibilitet, nedbrytbarhet och goda mekaniska egenskaper. Ett bra sätt att introducera funktionella grupper, som tillåter ändringar och modifikationer i polymerkedjan, kan vara att sampolymerisera med funktionella monomerer. I denna avhandling har därför fokus varit på att utveckla nya funktionella monomerer och polymerer.

Radikal ringöppningspolymerisation (RROP) av cykliska ketenacetaler har visat sig vara ett bra alternativ till att syntetisera alifatiska polyestrar jämfört med vanlig traditionell ringöppningspolymerisation. Med RROP är det möjligt att inkorporera esterfunktionalitet i polymerkedjan för icke nedbrytbara polymerer genom att sampolymerisera cykliska ketenacetaler med vinylmonomerer.

Möjligheten att skapa material med hög grad av funktionalitet uppnås genom att sampolymerisera med andra funktionella monomerer. Tre olika sampolymerer syntetiserades. Den första sampolymeren tillverkades för att introducera hydrofilicitet till en hydrofob polymer genom att sampolymerisera två ketenacetaler; 2-metyl-1,3,6-trioxocan (MTC) och 2-metyl-dioxepan (MDO). Därefter sampolymeriserades MDO med vinylacetat (VAc) för att tillföra nedbrytbarhet från MDO till ett, från huvudkedjan, onedbrytbart material. Acetatgruppen hydrolyserades därefter till den mer hydrofila alkoholgruppen. Som en sista sampolymerisation gjordes en med MDO med glycidylmetakrylat (GMA) för att införa funktionalitet till en nedbrytbar polymer. Epoxidgruppen tillhörande GMA, användes därefter för att kovalent koppla på den bioaktiva molekylen heparin på sampolymeren.

Nedbrytbarheten i denna klass av sampolymerer undersöktes med hjälp av att använda det MDO/GMA-baserade materialet som modell. Som resultat visade det sig att man, efter 133 dagar, varken kunde se en snabb frisättning av sura nedbrytningsprodukter eller en stor sänkning av pH. MTT-analyser utfördes för att visa att materialet inte var giftigt. Både resultaten från nedbrytningsstudien tillsammans med MTT-analyserna visade att dessa material är potentiella material för användning i biomedicinska applikationer.

Till sist kombinerades kontrollerad radikalpolymerisation med kontrollerad ringöppningspolymerisation. För att syntetisera funktionella makroinitiatorer sampolymeriserades monomeren α-brom-γ-butyrolakton (αBrγBL) med ε-kaprolakton (εCL) eller L-laktid (LLA). Dessa makroinitiatorer har aktiva grupper längs med huvudkedjan som kan användas för ympning av olika akrylater; från de hydrofoba n-butylakrylat och metylmetakrylat till den hydrofila 2-hydroxyetylmetakrylat med hjälp av en kontrollerad radikalpolymerisationsmetod som kallas för SET-LRP. Genom att lyckas ympa ett brett spektrum av monomer med olika egenskaper på polyester-makroinitiatorerna resulterade detta i att det gick att kombinera två olika polymerisationsmetoder på ett enkelt sätt.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. 74 p.
Series
TRITA-CHE-Report, ISSN 1654-1081 ; 2014:22
National Category
Polymer Technologies
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-145193 (URN)978-91-7595-126-3 (ISBN)
Public defence
2014-05-23, K2, Teknikringen 28, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20140514

Available from: 2014-05-14 Created: 2014-05-14 Last updated: 2014-05-14Bibliographically approved
2. Functional Degradable Polymers: from the monomeric point of view
Open this publication in new window or tab >>Functional Degradable Polymers: from the monomeric point of view
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Degradable polymers is key, within the future vison, of creating a sustainable society were all aspects, cradle to grave, can be realized in a sustainable way. It is imperative to consider, how the monomer is formed, its polymerization, the material properties created and the final degradation behavior. In this thesis, the major focus will be placed on the three former aspects from the vantage point of the monomer. The immense variety of different monomers available within the realm of polymer chemistry necessitates a logical division among them. Herein, we make such a division according to their respective inherent thermodynamic properties and how these translate into the synthetic behavior of the corresponding polymers. These divisions are as follows: stable monomers (monomers that resist becoming polymers), meta-stable monomers (monomers for which temperature is of immense importance during polymer formation), and unstable monomers (monomers that desire to be in the polymeric state). From this viewpoint, three different investigations were conducted, thereby demonstrating the inherent advantages and disadvantages of each type together with the importance of using the “right” catalyst for the “right” monomer.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. 75 p.
Series
TRITA-CHE-Report, ISSN 1654-1081 ; 2015:26
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-166872 (URN)978-91-7595-585-8 (ISBN)
Public defence
2015-06-12, D2, Lindstedtsvägen 5, KTH, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QS C 20150222

Available from: 2015-05-22 Created: 2015-05-20 Last updated: 2015-05-22Bibliographically approved

Open Access in DiVA

fulltext(1209 kB)190 downloads
File information
File name FULLTEXT01.pdfFile size 1209 kBChecksum SHA-512
1c3c0d34bd1611448986f65ae55935275fc462c649889b8c44d022cad92354df97aa252af224d0a1f1f3b7802ce02f2002b473bd8f2a035b3d702c9bfe46f2dc
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusPublisher's website

Authority records BETA

Undin, JennyOdelius, Karin

Search in DiVA

By author/editor
Olsén, PeterUndin, JennyOdelius, KarinAlbertsson, Ann-Christine
By organisation
Polymer Technology
In the same journal
Polymer Chemistry
Polymer Technologies

Search outside of DiVA

GoogleGoogle Scholar
Total: 190 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 249 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf