Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Metal release and speciation of released chromium from a biomedical CoCrMo alloy into simulated physiologically relevant solutions
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.ORCID iD: 0000-0003-2145-3650
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.ORCID iD: 0000-0003-2206-0082
2014 (English)In: Journal of Biomedical Materials Research. Part B - Applied biomaterials, ISSN 1552-4973, E-ISSN 1552-4981, Vol. 102, no 4, 693-699 p.Article in journal (Refereed) Published
Abstract [en]

The objective of this study was to investigate the extent of released Co, Cr(III), Cr(VI), and Mo from a biomedical high-carbon CoCrMo alloy exposed in phosphate-buffered saline (PBS), without and with the addition of 10 mu M H2O2 (PBS + H2O2), and 10 g L-1 bovine serum albumin (PBS + BSA) for time periods up to 28 days. Comparative studies were made on AISI 316L for the longest time period. No Cr(VI) release was observed for any of the alloys in either PBS or PBS + H2O2 at open-circuit potential (no applied potential). However, at applied potentials (0.7 V vs. Ag/AgCl), Cr was primarily released as Cr(VI). Co was preferentially released from the CoCrMo alloy at no applied potential. As a consequence, Cr was enriched in the utmost surface oxide reducing the extent of metal release over time. This passivation effect was accelerated in PBS + H2O2. As previously reported for 316L, BSA may also enhance metal release from CoCrMo. However, this was not possible to verify due to the precipitation of metal-protein complexes with reduced metal concentrations in solution as a consequence. This was particularly important for Co-BSA complexes after sufficient time and resulted in an underestimation of metals in solution.

Place, publisher, year, edition, pages
2014. Vol. 102, no 4, 693-699 p.
Keyword [en]
chromium, speciation, hydrogen peroxide, bovine serum albumin, metal release
National Category
Biomaterials Science
Identifiers
URN: urn:nbn:se:kth:diva-145259DOI: 10.1002/jbm.b.33048ISI: 000334244300006Scopus ID: 2-s2.0-84898921547OAI: oai:DiVA.org:kth-145259DiVA: diva2:717634
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20140516

Available from: 2014-05-16 Created: 2014-05-15 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Hedberg, YolandaOdnevall Wallinder, Inger

Search in DiVA

By author/editor
Hedberg, YolandaOdnevall Wallinder, Inger
By organisation
Surface and Corrosion Science
In the same journal
Journal of Biomedical Materials Research. Part B - Applied biomaterials
Biomaterials Science

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 53 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf