Change search
ReferencesLink to record
Permanent link

Direct link
Lithium-Ion Battery Cell Cycling and Usage Analysis in a Heavy-Duty Truck Field Study
Scania CV AB, Sweden.ORCID iD: 0000-0001-9559-0004
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0002-9392-9059
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0001-9203-9313
2015 (English)In: Energies, ISSN 1996-1073, Vol. 8, no 5, 4513-4528 p.Article in journal (Refereed) Published
Abstract [en]

This paper presents results from a field test performed on commercial power-optimized lithium-ion battery cells cycled on three heavy-duty trucks. The goal with this study was to age battery cells in a hybrid electric vehicle (HEV) environment and find suitable methods for identifying cell ageing. The battery cells were cycled on in-house developed equipment intended for testing on conventional vehicles by emulating an HEV environment. A hybrid strategy that allows battery usage to vary within certain limits depending on driving patterns was used. This concept allows unobtrusive and low-cost testing of battery cells under realistic conditions. Each truck was equipped with one cell cycling equipment and two battery cells. One cell per vehicle was cycled during the test period while a reference cell on each vehicle experienced the same environmental conditions without being cycled. Differential voltage analysis and electrochemical impedance spectroscopy were used to identify ageing of the tested battery cells. Analysis of driving patterns and battery usage was performed from collected vehicle data and battery cell data.

Place, publisher, year, edition, pages
2015. Vol. 8, no 5, 4513-4528 p.
Keyword [en]
DV/dQ, Electrochemical Impedance Spectroscopy (EIS), HEV, Hybrid electric vehicle, Lithium-ion battery
National Category
Chemical Engineering
URN: urn:nbn:se:kth:diva-145417DOI: 10.3390/en8054513ISI: 000356879600061ScopusID: 2-s2.0-84930260888OAI: diva2:718168
Swedish Energy Agency

QC 20150825. Updated from Manuscript to Article in journal.

Available from: 2014-05-20 Created: 2014-05-20 Last updated: 2015-08-25Bibliographically approved
In thesis
1. Methods for Testing and Analyzing Lithium-Ion Battery Cells intended for Heavy-Duty Hybrid Electric Vehicles
Open this publication in new window or tab >>Methods for Testing and Analyzing Lithium-Ion Battery Cells intended for Heavy-Duty Hybrid Electric Vehicles
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Lithium-ion batteries designed for use in heavy-duty hybrid vehicles are continuously improved in terms of performance and longevity, but they still have limitations that need to be considered when developing new hybrid vehicles.               

The aim of this thesis has been to study and evaluate potential test and analysis methods suitable for being used in the design process when maximizing lifetime and utilization of batteries in heavy-duty hybrid vehicles.

A concept for battery cell cycling on vehicles has been evaluated. The work included development of test equipment, verification of hardware and software as well as an extended period of validation on heavy-duty trucks. The work showed that the concept has great potential for evaluating strategies for battery usage in hybrid vehicles, but is less useful for accelerated aging of battery cells.                            

Battery cells encapsulated in flexible packaging material have been investigated with respect to the durability of the encapsulation in a demanding heavy-duty hybrid truck environment. No effect on water intrusion was detected after vibration and temperature cycling of the battery cells.                   

Aging of commercial battery cells of the type lithium manganese oxide - lithium cobalt oxide / lithium titanium oxide (LMO-LCO/LTO) was investigated with different electrochemical methods to gain a deeper understanding of the origin of performance deterioration, and to understand the consequences of aging from a vehicle manufacturer's perspective. The investigation revealed that both capacity loss and impedance rise were largely linked to the positive electrode for this type of battery chemistry.                          

Postmortem analysis of material from cycle-aged and calendar-aged battery cells of the type LMO-LCO/LTO and LiFePO4/graphite was performed to reveal details about aging mechanisms for those cell chemistries. Analysis of cycle-aged LMO-LCO/LTO cells revealed traces of manganese in the negative electrode and that the positive electrode exhibited the most severe aging. Analysis of cycle-aged LFP/graphite cells revealed traces of iron in the negative electrode and that the negative electrode exhibited the most severe aging.

Abstract [sv]

Litiumjonbatterier anpassade för användning i tunga hybridfordon förbättras kontinuerligt med avseende på prestanda och livslängd men har fortfarande begränsningar som måste beaktas vid utveckling av nya hybridfordon.                

Syftet med denna avhandling har varit att studera och utvärdera potentiella prov- och analysmetoder lämpliga för användning i arbetet med att maximera livslängd och utnyttjandegrad av batterier i tunga hybridfordon.                              

Ett koncept för battericykling på fordon har utvärderats. Arbetet innefattade utveckling av testutrustning, verifiering av hårdvara och mjukvara samt en längre periods validering på lastbilar. Arbetet har visat att konceptet har stor potential för utvärdering av strategier för användandet av batterier i hybridfordon, men är mindre användbar för åldring av batterier.                               

Batterier kapslade i flexibelt förpackningsmaterial har undersökts med avseende på kapslingens hållbarhet i en krävande hybridlastbilsmiljö. Ingen påverkan på fuktinträngning kunde påvisas efter vibration och temperaturcykling av de testade battericellerna.                    

Åldring av kommersiella battericeller av typen litiummanganoxid - litiumkoboltoxid/litiumtitanoxid (LMO-LCO/LTO) undersöktes med olika elektrokemiska metoder för att få en djupare förståelse för prestandaförändringens ursprung och för att förstå konsekvenserna av åldrandet ur en fordonstillverkares användarperspektiv. Undersökningen visade att både kapacitetsförlust och impedanshöjning till största delen var kopplat till den positiva elektroden för denna batterityp.                 

Post-mortem analys av material från cyklade och kalenderåldrade kommersiella battericeller av typen LMO-LCO/LTO och LiFePO4/grafit utfördes för att avslöja detaljer kring åldringsmekanismerna för dessa cellkemier. Vid analys av cyklade LMO-LCO/LTO celler påvisades mangan i den negativa elektroden samt uppvisade den positiva elektroden kraftigast åldring. Vid analys av cyklade LFP/grafit celler påvisades järn i den negativa elektroden samt uppvisade den negativa elektroden kraftigast åldring.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. xii, 75 p.
TRITA-CHE-Report, ISSN 1654-1081 ; 2014:21
Li-ion, battery, hybrid electric vehicle
National Category
Other Chemical Engineering
Research subject
Chemical Engineering
urn:nbn:se:kth:diva-145166 (URN)978-91-7595-127-0 (ISBN)
Public defence
2014-06-03, K2, Teknikringen 28, KTH, Stockholm, 16:06 (English)
Swedish Energy Agency, 35088-1

QC 20140520

Available from: 2014-05-20 Created: 2014-05-13 Last updated: 2014-06-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Svens, PontusBehm, MårtenLindbergh, Göran
By organisation
Applied Electrochemistry
In the same journal
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 442 hits
ReferencesLink to record
Permanent link

Direct link