Change search
ReferencesLink to record
Permanent link

Direct link
Investigation of distortion-induced fatigue cracked welded details using 3D crack propagation analysis
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.ORCID iD: 0000-0003-4180-4710
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0002-2833-4585
2014 (English)In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 64, 54-66 p.Article in journal (Refereed) Published
Abstract [en]

The behaviour of distortion-induced fatigue cracks in welded details in an existing bridge was studied analytically by performing crack propagation analysis based on linear elastic fracture mechanics. The real load history of the bridge was obtained from strain measurements. These loads were utilised to examine the crack growth rate and the residual service life of the cracked detail. Moreover, the effectiveness, accuracy and applicability of the crack propagation analysis on bridge structures were investigated by simulating a complex case of fatigue cracking using several crack propagation analyses. The results of the analyses revealed that the fatigue crack in the studied details had significantly different crack growth characteristics in different directions. In the thickness direction, for instance, the crack was seen to propagate at a certain rate, which increased with the propagated crack from the beginning and, as expected, the crack propagation rate decreased when the crack grew longer. The crack was subsequently arrested half way through the thickness of the plate. In the longitudinal direction, the crack was not, however, arrested in the same way as in the thickness direction and it continued to propagate at a reduced yet constant crack growth rate. The results also revealed that, even though distortion-induced fatigue cracking was usually caused by a mixed-mode condition (i.e. a combination of modes I, II and III), the governing propagation mode is still mode I. Furthermore, it was also observed that the contribution of modes II and III to crack propagation was very little and dependent on the location of the propagated crack front, as well as the geometrical configuration of the cross-beam.

Place, publisher, year, edition, pages
2014. Vol. 64, 54-66 p.
Keyword [en]
Crack growth rate, Crack propagation analysis, Distortion-induced fatigue cracking, Mixed mode conditions, Out-of-plane distortion
National Category
Materials Engineering
URN: urn:nbn:se:kth:diva-145385DOI: 10.1016/j.ijfatigue.2014.02.014ISI: 000335097500006ScopusID: 2-s2.0-84897898093OAI: diva2:718182

QC 20140520

Available from: 2014-05-20 Created: 2014-05-19 Last updated: 2014-06-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Barsoum, ZuheirLeander, John
By organisation
Lightweight StructuresStructural Engineering and Bridges
In the same journal
International Journal of Fatigue
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 104 hits
ReferencesLink to record
Permanent link

Direct link