References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt156",{id:"formSmash:upper:j_idt153:j_idt156",widgetVar:"widget_formSmash_upper_j_idt153_j_idt156",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Density functionals in the presence of magnetic fieldPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2014 (English)In: International Journal of Quantum Chemistry, ISSN 0020-7608, E-ISSN 1097-461X, Vol. 114, no 21, 1445-1456 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

John Wiley & Sons, 2014. Vol. 114, no 21, 1445-1456 p.
##### Keyword [en]

current density functional theory, paramagnetic current density functionals, Levy-Lieb density functional, convexity, Euler-Lagrange equations
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-145539DOI: 10.1002/qua.24707ISI: 000344331100005ScopusID: 2-s2.0-84908085960OAI: oai:DiVA.org:kth-145539DiVA: diva2:718620
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt455",{id:"formSmash:j_idt455",widgetVar:"widget_formSmash_j_idt455",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt461",{id:"formSmash:j_idt461",widgetVar:"widget_formSmash_j_idt461",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt467",{id:"formSmash:j_idt467",widgetVar:"widget_formSmash_j_idt467",multiple:true});
##### Note

##### In thesis

In this article, density functionals for Coulomb systems subjected to electric and magnetic fields are developed. The density functionals depend on the particle density rho and paramagnetic current density j(p). This approach is motivated by an adapted version of the Vignale and Rasolt formulation of current density functional theory, which establishes a one-toone correspondence between the nondegenerate groundstate and the particle and paramagnetic current density. Definition of N-representable density pairs (rho,j(p)) is given and it is proven that the set of v-representable densities constitutes a proper subset of the set of N-representable densities. For a Levy-Lieb-type functional Q(rho,j(p)), it is demonstrated that (i) it is a proper extension of the universal Hohenberg-Kohn functional F-HK (rho,j(p)) to N-representable densities, (ii) there exists a wavefunction psi(0) such that Q(rho; j(p)) = (psi(0); H-0 psi(0))(rho), where H-0 is the Hamiltonian without external potential terms, and (iii) it is not convex. Furthermore, a convex and universal functional F(rho, j(p)) is studied and proven to be equal the convex envelope of Q(rho, j(p)). For both Q and F, we give upper and lower bounds.

QC 20141205. Updated from accepted to published.

Available from: 2014-05-21 Created: 2014-05-21 Last updated: 2014-12-05Bibliographically approved1. Foundation of Density Functionals in the Presence of Magnetic Field$(function(){PrimeFaces.cw("OverlayPanel","overlay718653",{id:"formSmash:j_idt731:0:j_idt735",widgetVar:"overlay718653",target:"formSmash:j_idt731:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1196",{id:"formSmash:lower:j_idt1196",widgetVar:"widget_formSmash_lower_j_idt1196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1197_j_idt1199",{id:"formSmash:lower:j_idt1197:j_idt1199",widgetVar:"widget_formSmash_lower_j_idt1197_j_idt1199",target:"formSmash:lower:j_idt1197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});