Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Graphene – A Two-Dimensional Dirac Material
KTH, School of Engineering Sciences (SCI), Theoretical Physics.
KTH, School of Engineering Sciences (SCI), Theoretical Physics.
2014 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Graphene is a two-dimensional material, whose popularity has soared in both condensedmatter

physics and material science the past decade. Due to its unique properties,

graphene can be used in a vast array of new and interesting applications that could fundamentally

change the material industry. This report reviews the current research and

literature in order to trace the historical development of graphene. Then, in order to

better understand the material, the unique properties of graphene are explained and potential

applications are listed. From a theoretical physics perspective, the tight-binding

approximation is used to calculate the energy bands formed by the

-electrons. Then, the

electrons close to the Fermi energy are shown to satisfy the relativistic Dirac equation of

a massless fermion and additionally, the Landau energy levels of graphene are calculated.

Finally, the band gap structure of graphene is modelled and compared to that of silicon

Abstract [sv]

Grafen är ett tvådimensionellt material vars popularitet har stigit kraftigt inom fasta tillståndets

fysik och materialfysik det senaste årtiondet. Grafen har unika egenskaper som

kan användas till ett stort antal nya och intressanta tillämpningar, vilket skulle kunna

fundamentalt förändra materialindustrin. Denna rapport går igenom befintlig forskning

och litteratur för en historisk tillbakablick av grafen. Vidare förklaras materialets unika

egenskaper och möjliga tillämpningar gås igenom. Från ett fysikperspektiv, så används

den så kallade

tight-binding approximationen för att beräkna energibanden bildade av

-elektronerna. Sedan visas att elektronerna nära Fermienergin kan beskrivas av den relativistiska

Diracekvationen för en masslös fermion och Landau-energinivåerna beräknas.

Slutligen modelleras energibandstrukturen för grafen och detta jämförs med motsvarande

för kisel.

Place, publisher, year, edition, pages
2014. , 28 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-145905OAI: oai:DiVA.org:kth-145905DiVA: diva2:721093
Supervisors
Available from: 2014-06-03 Created: 2014-06-03 Last updated: 2014-06-03Bibliographically approved

Open Access in DiVA

Kandidatexamensarbete Danny Liu, Johan Wicklund(2644 kB)2727 downloads
File information
File name FULLTEXT01.pdfFile size 2644 kBChecksum SHA-512
e78e08b16d678510956441a61d5a584db0ddac59e8bcb563098b9c98911451b492cc47b3a6adb543302c3809b707a870438859fb3d56c82f4e3b744a7c332a95
Type fulltextMimetype application/pdf

By organisation
Theoretical Physics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 2727 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1469 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf