Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Automatiserad matchning av relaterad data från olika datakällor
KTH, School of Technology and Health (STH), Medical Engineering, Computer and Electronic Engineering.
KTH, School of Technology and Health (STH), Medical Engineering, Computer and Electronic Engineering.
2014 (Swedish)Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesisAlternative title
Automated matching of related data from different data sources (English)
Abstract [sv]

Sociala medier innehåller idag massor av information som kan bidra till att ge applikationer och produkter ett stort mervärde genom att ge en förbättrad användarupplevelse. I vissa fall kan sådan information inte erhållas utan att först matcha data från en eller flera datakällor genom en data fusion.

 

Eniro Initiatives AB vill undersöka möjligheter för att genomföra en automatiserad data fusion genom att koppla företag från sitt API till motsvarande företag på sociala medier. Problematiken ligger i att den enda helt säkra källan till matchning av alla svenska företag är dess organisationsnummer, vilket är data som inte finns tillgänglig hos API:er från utländska företag. Syftet var att undersöka möjligheter för att på automatiserat sätt kunna matcha relaterad data från olika datakällor.

 

I detta examensarbete har en prototyp utvecklats som matchar företag från Eniros API med företags sidor från Facebooks API. Resultatet från tester av denna prototyp visar dock brister, då det uppkom fall där redundant information bidrog till att prototypen kunde godkänna inofficiella sidor med koppling till det relevanta företaget, vilket inte var önskvärt.

Abstract [en]

Social media today contains a lot of information that can add a great value for applications and products by achieve an improved user experience. In some cases, such information cannot be obtained without matching data from one or several data sources through a data fusion.

 

Eniro Initiatives AB wants to explore opportunities to implement an automated data fusion model by matching companies from its own API to the corresponding company on social media. The problem is that the only completely secured data of matching of all Swedish companies is its corporate identity, which is data that is not available with APIs that origin from foreign companies. The aim was to explore possibilities for the automated way to match related data from different data sources.

 

In this thesis, a prototype was developed to match companies from Eniro’s API with company pages from Facebook's API. The results from the tests of this prototype shows small deficiencies where redundant information made the prototype able to approve unofficial pages with links to the relevant company, which was not desirable.

Place, publisher, year, edition, pages
2014. , 94 p.
Series
TRITA-STH, 2014-28
Keyword [en]
data fusion, text recognition, text matching, company data
Keyword [sv]
data fusion, text recognition, textmatchning, företagsdata
National Category
Computer Engineering
Identifiers
URN: urn:nbn:se:kth:diva-146329OAI: oai:DiVA.org:kth-146329DiVA: diva2:724670
External cooperation
Eniro Initiative AB
Subject / course
Computer Technology, Program- and System Development
Educational program
Bachelor of Science in Engineering - Computer Engineering
Supervisors
Examiners
Available from: 2014-10-15 Created: 2014-06-11 Last updated: 2014-10-15Bibliographically approved

Open Access in DiVA

ExamensrapportGaisRobin(1868 kB)241 downloads
File information
File name FULLTEXT01.pdfFile size 1868 kBChecksum SHA-512
a26609c835c7180c0d8e3d4f50ea7016f223c79b5a46daf3de6d8da6dd234c9b9b101b92dd65976df02672425e11180ae1cdaad2270297c68d96b2a0a8e0f643
Type fulltextMimetype application/pdf

By organisation
Computer and Electronic Engineering
Computer Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 241 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 411 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf