Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energy-resolved CT imaging with a photon-counting silicon-strip detector
KTH, School of Engineering Sciences (SCI), Physics, Physics of Medical Imaging.ORCID iD: 0000-0002-5092-8822
KTH, School of Engineering Sciences (SCI), Physics, Physics of Medical Imaging.
KTH, School of Engineering Sciences (SCI), Physics, Physics of Medical Imaging.
KTH, School of Engineering Sciences (SCI), Physics, Physics of Medical Imaging.
Show others and affiliations
2014 (English)In: Medical Imaging 2014: Physics of Medical Imaging, SPIE - International Society for Optical Engineering, 2014, 90333L- p.Conference paper, Published paper (Refereed)
Abstract [en]

Photon-counting detectors are promising candidates for use in the next generation of x-ray CT scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose, and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes claimed to be unsuitable for use in computed tomography because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that high-quality energy-resolved CT images can nonetheless be acquired with clinically realistic exposure parameters using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. We use basis material decomposition to obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

Place, publisher, year, edition, pages
SPIE - International Society for Optical Engineering, 2014. 90333L- p.
Series
Progress in Biomedical Optics and Imaging, ISSN 1605-7422 ; 9033
Keyword [en]
Computed tomography, material decomposition, material quantification, photon-counting, silicon-strip detector, spectral CT
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
URN: urn:nbn:se:kth:diva-146705DOI: 10.1117/12.2043519ISI: 000338775800124Scopus ID: 2-s2.0-84901628831ISBN: 978-081949826-7 (print)OAI: oai:DiVA.org:kth-146705DiVA: diva2:724828
Conference
Medical Imaging 2014: Physics of Medical Imaging; San Diego, CA; United States; 17 February 2014 through 20 February 2014
Note

QC 20140613

Available from: 2014-06-13 Created: 2014-06-13 Last updated: 2014-09-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Persson, MatsChen, HanYveborg, Moa

Search in DiVA

By author/editor
Persson, MatsHuber, BenKarlsson, StaffanLiu, XuejinChen, HanXu, ChengYveborg, MoaBornefalk, HansDanielsson, Mats
By organisation
Physics of Medical Imaging
Radiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 43 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf