Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparison of propagation-and grating-based x-ray phase-contrast imaging techniques with a liquid-metal-jet source
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0002-7258-002X
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
Show others and affiliations
2014 (English)In: Medical Imaging 2014: Physics of Medical Imaging, SPIE - International Society for Optical Engineering, 2014, 903353- p.Conference paper, Published paper (Refereed)
Abstract [en]

X-ray phase-contrast imaging has been developed as an alternative to conventional absorption imaging, partly for its dose advantage over absorption imaging at high resolution. Grating-based imaging (GBI) and propagation-based imaging (PBI) are two phase-contrast techniques used with polychromatic laboratory sources. We compare the two methods by experiments and simulations with respect to required dose. A simulation method based on the projection approximation is designed and verified with experiments. A comparison based on simulations of the doses required for detection of an object with respect to its diameter is presented, showing that for monochromatic radiation, there is a dose advantage for PBI for small features but an advantage for GBI at larger features. However, GBI suffers more from the introduction of polychromatic radiation, in this case so much that PBI gives lower dose for all investigated feature sizes. Furthermore, we present and compare experimental images of biomedical samples. While those support the dose advantage of PBI, they also highlight the GBI advantage of quantitative reconstruction of multimaterial samples. For all experiments a liquid-metal-jet source was used. Liquid-metal-jet sources are a promising option for laboratory-based phase-contrast imaging due to the relatively high brightness and small spot size.

Place, publisher, year, edition, pages
SPIE - International Society for Optical Engineering, 2014. 903353- p.
Series
Progress in Biomedical Optics and Imaging, ISSN 1605-7422 ; 9033
Keyword [en]
grating-based, phase-contrast, propagation-based, X-ray imaging
National Category
Medical Image Processing
Identifiers
URN: urn:nbn:se:kth:diva-146812DOI: 10.1117/12.2043417ISI: 000338775800173Scopus ID: 2-s2.0-84901626184ISBN: 978-081949826-7 (print)OAI: oai:DiVA.org:kth-146812DiVA: diva2:725540
Conference
Medical Imaging 2014: Physics of Medical Imaging; San Diego, CA; United States; 17 February 2014 through 20 February 2014
Note

QC 20140616

Available from: 2014-06-16 Created: 2014-06-16 Last updated: 2014-09-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Zhou, TunheLarsson, Daniel H.Hertz, Hans M.Burvall, Anna

Search in DiVA

By author/editor
Zhou, TunheLundström, UlfLarsson, Daniel H.Hertz, Hans M.Burvall, Anna
By organisation
Biomedical and X-ray Physics
Medical Image Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 81 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf