Change search
ReferencesLink to record
Permanent link

Direct link
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).
2014 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

This paper explains the basis for impartial games and the classic

game Nim. Nim is complicated by a modular Muller twist and the

solution for this game is described by a simple theorem. The modular

Muller twist means that at the end of each move the player selects a k

and the number of sticks the next player leaves in the pile, where the

draw is made, must be congruent with k modulo m. The number m is

fixed throughout the game.

Abstract [sv]

I denna rapport förklaras grunden för opartiska spel samt det klassiska

spelet Nim och hur man vinner i det. Nim kompliceras också med

en modulär Mullertwist och lösningen för detta spel beskrivs med en

enkel sats. Den modulära Mullertwisten innebär att i slutet av varje

drag väljer spelaren ett k och antalet stickor nästa spelare lämnar kvar

i den hög hon drar från måste vara kongruent med k modulo m. Talet m är fixt under hela spelet.

Place, publisher, year, edition, pages
2014. , 14 p.
National Category
Engineering and Technology
URN: urn:nbn:se:kth:diva-147574OAI: diva2:730826
Available from: 2014-06-30 Created: 2014-06-30 Last updated: 2014-06-30Bibliographically approved

Open Access in DiVA

Henrik Ekholmers kandidatexamensarbete(230 kB)58 downloads
File information
File name FULLTEXT01.pdfFile size 230 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Mathematics (Dept.)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 58 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 68 hits
ReferencesLink to record
Permanent link

Direct link