Change search
ReferencesLink to record
Permanent link

Direct link
Development and calibration of algebraic nonlinear models for terms in the Reynolds stress transport equations
KTH, School of Engineering Sciences (SCI), Mechanics, Turbulence.
KTH, School of Engineering Sciences (SCI), Mechanics, Turbulence.ORCID iD: 0000-0002-2711-4687
2000 (English)In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, no 12, 1554-1572 p.Article in journal (Refereed) Published
Abstract [en]

A simple and straightforward method is presented for the derivation and calibration of algebraic nonlinear models for terms in Reynolds stressturbulence closures. The method extensively utilizes data from direct numerical simulations to allow an investigation of the model performance over the entire Reynolds stressanisotropy-invariant map. The model constants are determined from the condition of minimizing the mean square error over the invariant map, in order to give good model behavior for as wide a class as possible of flow situations. A low Reynolds number closure is proposed based on the most general form for closing the Reynolds stresstransport equations in terms of Reynolds stresses and total dissipation rate. It is shown that forcing the closure to satisfy realizability in a strict sense leads to a good model behavior even for the complicated flow situation near a wall, without any use of ad-hoc wall damping functions in the closure. The model behavior in homogeneous turbulent flow is analyzed by formulating equations for invariant measures, yielding several quite general results for the behavior of the present and other existing models. A new approach to the modeling effects of rotation in the context of Reynolds stress closures is presented and tested for some different homogeneous flows subjected to rotation.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2000. no 12, 1554-1572 p.
National Category
Fluid Mechanics and Acoustics
Research subject
Engineering Mechanics
URN: urn:nbn:se:kth:diva-148129DOI: 10.1063/1.870404OAI: diva2:735321
NR 20140805Available from: 2014-07-25 Created: 2014-07-25 Last updated: 2014-07-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Johansson, Arne, V.
By organisation
In the same journal
Physics of fluids
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 14 hits
ReferencesLink to record
Permanent link

Direct link