Change search
ReferencesLink to record
Permanent link

Direct link
Thermo-Economic Optimization of Hybridization Options for Solar Retrofitting of Combined-Cycle Power Plants
Chalmers University of Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology. (Concentrated Solar Power)ORCID iD: 0000-0002-3458-2112
Chalmers University of Technology.
2014 (English)In: Journal of solar energy engineering, ISSN 0199-6231, Vol. 136, no 2, 021001- p.Article in journal (Refereed) Published
Abstract [en]

A thermo-economic optimization model of an integrated solar combined-cycle (ISCC) has been developed to evaluate the performance of an existing combined-cycle gas turbine (CCGT) plant when retrofitted with solar trough collectors. The model employs evolutionary algorithms to assess the optimal performance and cost of the power plant. To define the trade-offs required for maximizing gains and minimizing costs (and to identify ‘optimal’ hybridization schemes), two conflicting objectives were considered, namely, minimum required investment and maximum net present value (NPV). Optimiza- tion was performed for various feed-in tariff (FIT) regimes, with tariff levels that were either fixed or that varied with electricity pool prices. It was found that for the givencombined-cycle power plant design, only small annual solar shares (?1.2% annual share, 4% of installed capacity) could be achieved by retrofitting. The integrated solar combined-cycle design has optimal thermal storage capacities that are several times smaller than those of the corresponding solar-only design. Even with strong incentives to shift the load to periods in which the prices are higher, investment in storage capacity was not promoted. Nevertheless, the levelized costs of the additional solar-generated electricity are as low as 10 ce/kWh, compared to the 17–19 ce/kWh achieved for a reference, nonhybridized, “solar-only” concentrating solar power plant optimized with the same tools and cost dataset. The main reasons for the lower cost of the integrated solar combined-cycle power plant are improved solar-to-electric efficiency and the lower level of required investment in the steam cycle. The retrofitting of combined-cycle gas turbine plants to integrated solar combined-cycle plants with parabolic troughs represents a viable option to achieve relatively low-cost capacity expansion and strong knowledge building regarding concentrating solar power.

Place, publisher, year, edition, pages
ASME Press, 2014. Vol. 136, no 2, 021001- p.
Keyword [en]
Capacity expansion, Combined-cycle plants, Concentrating solar power, Concentrating solar power plant, Conflicting objectives, Knowledge building, Optimal performance, Thermoeconomic optimization
National Category
Energy Engineering
Research subject
Energy Technology
URN: urn:nbn:se:kth:diva-148151DOI: 10.1115/1.4024922ISI: 000344518400001ScopusID: 2-s2.0-84888116812OAI: diva2:735800

QC 20140911

Available from: 2014-08-01 Created: 2014-08-01 Last updated: 2014-12-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Spelling, James
By organisation
Heat and Power Technology
In the same journal
Journal of solar energy engineering
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 30 hits
ReferencesLink to record
Permanent link

Direct link