Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multiscale timestepping technique for ODEs and PDEs
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.
2014 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Tidsstegning med flera skalor för ODE och PDE (Swedish)
Abstract [en]

The focus of this thesis is to find efficient ways of solving certain types of ODEs and PDEs. We have implemented a time upscaling method called Multiscale timestepping technique for this problems. In this method discretization of PDEs are transformed into wavelet basis, which divides the solution and the discretized differential operator into coarse scales and fine scales. Larger time steps are then used for solving the fine scale elements. In numerical experiments we show that the accuracy of the solution is maintained but the computational cost is significantly reduced compared to standard methods.

Abstract [sv]

Denna uppsats behandlar effektiva metoder för att lösa vissa typer av ODE och PDE. Vi har implementerat en metod för tidsuppskaling som är baserad på tidsstegning med flera skalor. Metoden utgår från en vanlig rumsdiskretisering av en PDE. Den transformeras till en wavelet-bas som delar upp lösningen och den diskretiserade differentialoperatorn i grova och fina skalor. Stora tidssteg används sedan för att approximera de element som motsvarar fina skalor. I numeriska experiment visar vi att noggrannheten i lösningen bibehålls, men att beräkningskostnaden jämfört med standardmetoder blir betydligt mindre.

Place, publisher, year, edition, pages
2014.
Series
TRITA-MAT-E, 2014:40
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-148167OAI: oai:DiVA.org:kth-148167DiVA: diva2:735913
Subject / course
Scientific Computing
Educational program
Master of Science - Scientific Computing
Supervisors
Examiners
Available from: 2014-08-04 Created: 2014-08-04 Last updated: 2014-08-04Bibliographically approved

Open Access in DiVA

fulltext(3207 kB)128 downloads
File information
File name FULLTEXT01.pdfFile size 3207 kBChecksum SHA-512
6efe17fcbe4022faa7d0b0bc796313f4c44a97afe959b9e87fb0b5790c15b47d63c477584a6c14e31b3b612f4dcaa31e7a90e9b8fedb3dfe02c751ca28c3ded7
Type fulltextMimetype application/pdf

By organisation
Numerical Analysis, NA
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 128 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 132 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf