Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Diesel engines after treatment devices: Acoustic modeling
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL.
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL.ORCID iD: 0000-0001-7898-8643
2005 (English)In: 12th International Congress on Sound and Vibration 2005: ICSV 2005, 2005, 2358-2365 p.Conference paper, Published paper (Refereed)
Abstract [en]

To reduce exhaust pollutants from diesel engines a Diesel Particulate Filter (DPF) is normally fixed after a Catalytic Converter (CC) in an expansion chamber to create a complete After-Treatment Device (ATD). As part of the work in the EC-project ARTEMIS the authors have published a series of papers on the modeling of DPF units. Here the final and complete DPF model is presented. The model calculates the acoustic 2-port by solving the convective acoustic wave equations for two neighboring cells simplified in the manner of the Zwikker and Kosten theory. A segmentation approach has been employed to handle the actual flow, density, pressure, and temperature distribution inside the monoliths at each frequency. The theoretical results were compared with measured transmission loss data at different flow speeds and the agreement is excellent. The new complete model has also been compared with the 1-D model earlier suggested by the authors. It turns out that by using a wave number based on the Kirchhoff solution for plane waves in narrow pipes, the simple 1-D model works almost as well as the complete model. Another conclusion is that the effect of mean flow on the sound transmission through a filter is very small. Using the new model and existing models for standard pipe elements and the CC, the acoustic 2-port for a car ATD unit has been calculated and used to predict the transmission loss. The agreement between the predictions and the measured data for various flow speeds is good.

Place, publisher, year, edition, pages
2005. 2358-2365 p.
Series
12th International Congress on Sound and Vibration 2005, Vol. 3
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-148559Scopus ID: 2-s2.0-84881585096ISBN: 978-162748149-6 (print)OAI: oai:DiVA.org:kth-148559DiVA: diva2:737098
Conference
12th International Congress on Sound and Vibration 2005, ICSV 2005; Lisbon, Portugal, 11-14 July, 2005
Note

QC 20140811

Available from: 2014-08-11 Created: 2014-08-08 Last updated: 2014-08-11Bibliographically approved

Open Access in DiVA

No full text

Scopus

Authority records BETA

Åbom, Mats

Search in DiVA

By author/editor
Allam, SabryÅbom, Mats
By organisation
Marcus Wallenberg Laboratory MWL
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 79 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf