Change search
ReferencesLink to record
Permanent link

Direct link
Lightweight, Highly Compressible, Noncrystalline Cellulose Capsules
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.ORCID iD: 0000-0002-4511-1076
KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0001-9176-7116
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0001-8622-0386
2014 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 30, no 26, 7635-7644 p.Article in journal (Refereed) Published
Abstract [en]

We demonstrate how to prepare extraordinarily deformable, gas-filled, spherical capsules from nonmodified cellulose. These capsules have a low nominal density, ranging from 7.6 to 14.2 kg/m(3), and can be deformed elastically to 70% deformation at 50% relative humidity. No compressive strain-at-break could be detected for these dry cellulose capsules, since they did not rupture even when compressed into a disk with pockets of highly compressed air. A quantitative constitutive model for the large deformation compression of these capsules is derived, including their high-frequency mechanical response and their low-frequency force relaxation, where the latter is governed by the gas barrier properties of the dry capsule. Mechanical testing corroborated these models with good accuracy. Force relaxation measurements at a constant compression rendered an estimate for the gas permeability of air through the capsule wall, calculated to 0.4 mL mu m/m(2) days kPa at 50% relative humidity. These properties taken together open up a large application area for the capsules, and they could most likely be used for applications in compressible, lightweight materials and also constitute excellent model materials for adsorption and adhesion studies.

Place, publisher, year, edition, pages
2014. Vol. 30, no 26, 7635-7644 p.
Keyword [en]
Stability, Microbubbles, Dissolution, Behavior, Shells, Foams
National Category
Other Chemistry Topics
URN: urn:nbn:se:kth:diva-148607DOI: 10.1021/la501118bISI: 000338806500003ScopusID: 2-s2.0-84903974299OAI: diva2:737152

QC 20140812

Available from: 2014-08-12 Created: 2014-08-11 Last updated: 2014-08-29Bibliographically approved
In thesis
1. Macro-, Micro- and Nanospheres from Cellulose: Their Preparation, Characterization and Utilization
Open this publication in new window or tab >>Macro-, Micro- and Nanospheres from Cellulose: Their Preparation, Characterization and Utilization
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The structure of a polymeric material has a great influence in many fundamental scientific areas as well as in more applied science, since it affects the diffusion, permeability, mechanical strength, elasticity, and colloidal properties of the materials. The results in this thesis demonstrate that it is possible to fabricate solid and hollow cellulose spheres with a cellulose shell and encapsulated gas, liquid or solid particles and with a sphere size ranging from a few hundreds of nanometres to several millimetres, all with a tailored design and purpose.

The sizes of the different spheres have been controlled by three different preparation methods: large cellulose macrospheres by a solution solidification procedure, hollow micrometre-sized cellulose spheres by a liquid flow-focusing technique in microchannels, and nanometre-sized cellulose spheres by a membrane emulsification technique. 

The spheres were then modified in different ways in order to functionalize them into more advanced materials. This thesis demonstrates how to control the cellulose sphere dimensions and the wall-to-void volume ratio, the elasticity and the functionality of the spheres as such, where they were prepared to be pH-responsive, surface specific and X-ray active. These modifications are interesting in several different types of final materials such as packaging materials, drug release devices or advanced in vivo diagnostic applications.

In the more fundamental science approach, surface-smooth solid cellulose spheres were prepared for characterization of the macroscopic work of adhesion when a cellulose surface is separated from another material. Using these ultra-smooth macroscopic cellulose probes, it is possible to measure the compatibility and the surface interactions between cellulose and other materials which provide an important tool for incorporating cellulose into different composite materials. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. 67 p.
TRITA-CHE-Report, ISSN 1654-1081 ; 2014:32
Cellulose, sphere, capsule, functionalization
National Category
Polymer Technologies
Research subject
Fibre and Polymer Science
urn:nbn:se:kth:diva-149807 (URN)978-91-7595-231-4 (ISBN)
Public defence
2014-09-26, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)

QC 20140829

Available from: 2014-08-29 Created: 2014-08-27 Last updated: 2014-08-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Carrick, ChristopherLarsson, Per TomasWågberg, Lars
By organisation
Fibre TechnologyWallenberg Wood Science Center
In the same journal
Other Chemistry Topics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 143 hits
ReferencesLink to record
Permanent link

Direct link