Change search
ReferencesLink to record
Permanent link

Direct link
Analytical Mechanics with Computer Algebra.
KTH, School of Engineering Sciences (SCI), Mechanics.
KTH, School of Engineering Sciences (SCI), Mechanics.
2014 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

In this project we have been studying two different advanced mechanical pendulums, which are close to impossible to solve by hand. The theory behind our method is Lagrange’s equations which lead to the system's equations of motion. These equations of motion are solved with Sophia, a program package to the symbolic programming language Maple. The solution is given on a general analytic form and can be specified with numerical parameters which allow us to visualize the particle animation and also plot the generalized coordinates.

Abstract [sv]

I det här projektet har vi studerat två olika avancerade mekaniska pendlar som i stort sett inte går att behandla med papper och penna. Teorin vi har använt oss av är Lagranges ekvationer som leder till systemets rörelseekvationer. Dessa rörelseekvationer löses sedan medelst Sophia, ett programpaket till det symbolhanterande programmeringsspråket Maple. Lösningen ges på generell analytisk form och kan sedan preciseras med numeriska parametrar så att partikelbanor och plottar för lägeskoordinater kan överskådas.

Place, publisher, year, edition, pages
2014. , 34 p.
National Category
Engineering and Technology
URN: urn:nbn:se:kth:diva-148947OAI: diva2:737807
Available from: 2014-08-14 Created: 2014-08-14 Last updated: 2014-08-14Bibliographically approved

Open Access in DiVA

Matin Lindberg & Anders Pärlstrand kandidatexamensarbete. Department of mechanics. KTH.(962 kB)237 downloads
File information
File name FULLTEXT01.pdfFile size 962 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 237 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 230 hits
ReferencesLink to record
Permanent link

Direct link