Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermal radiation dynamics in two parallel plates: The role of near field
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.ORCID iD: 0000-0002-0111-9009
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.ORCID iD: 0000-0002-3368-9786
2014 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 90, no 4, 045414- p.Article in journal (Refereed) Published
Abstract [en]

The temperature dynamics of the radiative heat propagation in a multilayer structure is theoretically treated with a formalism combining the scattering matrix and Green's-functions methods. The time evolution of the temperature of parallel plates of silicon carbide in vacuum is simulated for different interplate distances and thicknesses of plates. The characteristic radiative heat exchange time and temperature of the plates at stationary state are determined from the time evolutions. The threshold interplate distance which separates heating and cooling regimes for the sink plate is found. We show that the variation of the interplate distance allows us to control the relaxation processes in the system of absorber and emitter.

Place, publisher, year, edition, pages
2014. Vol. 90, no 4, 045414- p.
Keyword [en]
Heat-Transfer, Matrix-Method, Scattering, Emission, Conversion, Bodies
National Category
Other Physics Topics
Identifiers
URN: urn:nbn:se:kth:diva-149201DOI: 10.1103/PhysRevB.90.045414ISI: 000339444100005Scopus ID: 2-s2.0-84905046184OAI: oai:DiVA.org:kth-149201DiVA: diva2:738435
Funder
Swedish Research Council
Note

QC 20140818

Available from: 2014-08-18 Created: 2014-08-18 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Dai, JinYan, Min

Search in DiVA

By author/editor
Dyakov, Sergey A.Dai, JinYan, Min
By organisation
Optics and Photonics, OFO
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 55 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf