Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Big meter data analysis of the energy efficiency potential in Stockholm's building stock
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Industrial Ecology.ORCID iD: 0000-0003-2621-4253
KTH, School of Industrial Engineering and Management (ITM), Industrial Economics and Management (Dept.), Sustainability and Industrial Dynamics.ORCID iD: 0000-0001-7028-0624
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Industrial Ecology.
2014 (English)In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 78, 153-164 p.Article in journal (Refereed) Published
Abstract [en]

The City of Stockholm is making substantial efforts towards meeting its climate change commitments including a GHG emission target of 3 tonnes per capita by 2020 and making its new eco-district Stockholm Royal Seaport a candidate of Clinton Climate Initiative's Climate Positive Program. Towards achieving these policies, this study evaluated the energy efficiency potential in the city, in collaboration with the district heating and electricity utility Fortum. Drawing on their vast billing meter data on the housing stock in Stockholm, a new understanding of energy use in the city emerged. Analysis of the energy efficiency potential of different building vintages revealed that the retrofitting potential of the building stock to current building codes would reduce heating energy use by one third. In terms of market segmentation, the greatest reduction potential in total energy was found to be for buildings constructed between 1946 and 1975. This is due to the large number of buildings constructed during that era and their poor energy performance. However, the least energy-efficient buildings were those built between 1926 and 1945 in contradiction to commonly held beliefs. These findings indicate the need for a shift in public policy towards the buildings with highest retrofitting potential.

Place, publisher, year, edition, pages
2014. Vol. 78, 153-164 p.
Keyword [en]
Retrofitting, Big Data, Climate action planning
National Category
Other Civil Engineering
Identifiers
URN: urn:nbn:se:kth:diva-149188DOI: 10.1016/j.enbuild.2014.04.017ISI: 000339133200018Scopus ID: 2-s2.0-84900461549OAI: oai:DiVA.org:kth-149188DiVA: diva2:738561
Note

QC 20140818

Available from: 2014-08-18 Created: 2014-08-18 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Investments, system dynamics, energy management and policy: a solution to the metric problem of bottom-up supply curves
Open this publication in new window or tab >>Investments, system dynamics, energy management and policy: a solution to the metric problem of bottom-up supply curves
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Today, issues such as climate change and increased competition for scarce resources puts pressure on society and firms to transform. Change is not easily managed though, especially not when relating to production or consumption of energy carriers such as district heating or electric power. These systems do not only have strong dynamics internally, but dynamics between multiple technological systems must sometimes be considered to effectively manage response and strategies in relation to change.

During the early 1980s, an optimisation model founded on an expert-based approach was developed based on the partial equilibrium model to enable the evaluation of different actions to reach a target. This model — often referred to as marginal abatement cost curve (MACC) or conservation supply curve (CSC) — is used by academia, industry and policymakers globally. The model is applied for causes such as energy conservation and waste management, but also within the climate change context for optimising CO2 reductions and governmental policy. In this context, the model is used by actors such as the Intergovernmental Panel on Climate Change (IPCC), International Energy Agency (IEA) and World Bank, and by the consultancy firm McKinsey & Company, who use it extensively in different analysis.

This model has many drawbacks in relation to managing interdependencies between different options, but more specifically the metric used for ranking options with a negative marginal cost has a design flaw leading to biased results. As a solution Pareto optimisation has been suggested, but is problematic given the dynamics within and between energy systems.

The purpose of this compilation dissertation is to improve the ability for industry and policymakers to effectively manage change and reach set targets. In particular it develops our knowledge of how to account for option interdependency within and between technological systems. Furthermore, the ranking problem relating to expert-based least cost integrated planning is addressed.

This dissertation also provides policy and managerial implications relating to the issues of energy conservation, CO2 abatement, and SOx and NOx reduction in relation to the district heating system in Stockholm. Implications are also provided for the interaction with other systems such as the Nordic electric power system.

Abstract [sv]

Klimatfrågan och konkurrens om knappa resurser medför ett förändringstryck på nationer och företag. Att hantera förändringar har aldrig varit enkelt, vilket är tydligt bland företag inom energisektorn såsom el och fjärrvärmeproducenter. Energisystemen dessa företag är del av har stark intern dynamik, men även dynamik mellan olika energisystem är vanligt. Detta måste tas i beaktande när strategier och planer för att hantera förändring utformas.

Under början av 1980-talet skapades en optimeringsmodell baserad på den nationalekonomiska jämviktsmodellen för att kunna utvärdera olika specifika möjligheter att nå ett mål, t.ex. energibesparingar. Denna modell, som idag ofta benämns MACC (Marginal Abatement Cost Curves) eller CSC (Concervation Supply Curves), används idag av akademin, industrin och myndigheter inom områden så som energibesparingar, minskade CO2-utsläpp, sophantering och design av ekonomiska policyinstrument. De icke-akademiska användarna inkluderar FNs klimatorgan IPCC, IEA och Världsbanken. Även konsultfirman McKinsey&Company använder modellen regelbundet i olika studier.

Tyvärr har modellen många begräsningar när det kommer till att hantera dynamiker mellan de specifika åtgärder som identifierats för att nå ett mål. Den allvarligast begränsningen utgörs dock av ett optimeringsfel som leder till felaktiga slutsatser om prioriteringen mellan de åtgärder som har en negativ marginalkostnad. Som en lösning på detta problem har pareto-optimering föreslagits, vilket denna avhandling dock visar är problematiskt på grund av de dynamiker som finns inom och mellan energisystem.

Det övergripande syftet med denna avhandling är att förbättra möjligheten att hantera förändringar och nå uppsatta mål. Specifikt diskuteras hur beroenden mellan olika åtgärder för att nå det satta målet kan hanteras. Avhandlingen adresser även problemet att prioritera mellan åtgärder med negativ marginalkostnad.

Utöver detta bidrar avhandlingen med praktiska implikationer för politiker, myndigheter och företag involverade i fjärrvärmeproduktion i Stockholm. Slutsatser dras kring energibesparingar och minskade utsläpp av CO2, SOx och NOx. Praktiska implikationer ges även för hur system som detta fjärrvärmesystem samverkar och interagerar med det nordiska elsystemet.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. 56 p.
Series
TRITA-IEO, ISSN 1100-7982 ; 2015:03
Keyword
Investments, Energy Management, Policy, MACC, CSC climate change abatement, energy efficiency and conservation, system dynamics
National Category
Business Administration Economics Energy Engineering
Research subject
Industrial Engineering and Management
Identifiers
urn:nbn:se:kth:diva-161904 (URN)978-91-7595-483-7 (ISBN)
Public defence
2015-05-08, E3, Osquarsbacke 14, KTH, Stockholm, 14:30 (English)
Opponent
Supervisors
Projects
Investments in energy efficiency and climate change abatement: revising marginal cost curves as an optimization model
Funder
Swedish Energy Agency, 35894-1
Note

QC 20150414

Available from: 2015-04-14 Created: 2015-03-18 Last updated: 2015-04-14Bibliographically approved
2. Smart Urban Metabolism: Toward a New Understanding of Causalities in Cities
Open this publication in new window or tab >>Smart Urban Metabolism: Toward a New Understanding of Causalities in Cities
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

For half a century, urban metabolism has been used to provide insights to support transitions to sustainable urban development (SUD). Internet and Communication Technology (ICT) has recently been recognized as a potential technology enabler to advance this transition. This thesis explored the potential for an ICT-enabled urban metabolism framework aimed at improving resource efficiency in urban areas by supporting decision-making processes. Three research objectives were identified: i) investigation of how the urban metabolism framework, aided by ICT, could be utilized to support decision-making processes; ii) development of an ICT platform that manages real-time, high spatial and temporal resolution urban metabolism data and evaluation of its implementation; and iii) identification of the potential for efficiency improvements through the use of resulting high spatial and temporal resolution urban metabolism data. The work to achieve these objectives was based on literature reviews, single-case study research in Stockholm, software engineering research, and big data analytics of resulting data. The evolved framework, Smart Urban Metabolism (SUM), enabled by the emerging context of smart cities, operates at higher temporal (up to real-time), and spatial (up to household/individual) data resolution. A key finding was that the new framework overcomes some of the barriers identified for the conventional urban metabolism framework. The results confirm that there are hidden urban patterns that may be uncovered by analyzing structured big urban data. Some of those patterns may lead to the identification of appropriate intervention measures for SUD.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. xiii, 73 p.
Series
TRITA-IM, ISSN 1402-7615 ; 2015:01
Keyword
industrial ecology, urban metabolism, smart cities, big data, data science
National Category
Other Environmental Engineering Environmental Analysis and Construction Information Technology
Research subject
Industrial Ecology
Identifiers
urn:nbn:se:kth:diva-176892 (URN)978-91-7595-737-1 (ISBN)
Public defence
2015-12-16, F3, Lindstedtsvägen 26, KTH, Stockholm, 14:00 (English)
Opponent
Supervisors
Projects
Smart City SRS
Funder
VINNOVA, 2012-01148
Note

QC 20151120

Available from: 2015-11-20 Created: 2015-11-11 Last updated: 2015-11-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Shahrokni, HosseinLevihn, Fabian

Search in DiVA

By author/editor
Shahrokni, HosseinLevihn, FabianBrandt, Nils
By organisation
Industrial EcologySustainability and Industrial Dynamics
In the same journal
Energy and Buildings
Other Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 542 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf