Change search
ReferencesLink to record
Permanent link

Direct link
Redox-Mediated Reconstruction of Copper during Carbon Monoxide Oxidation
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.ORCID iD: 0000-0003-0483-0602
Show others and affiliations
2014 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 118, no 29, 15902-15909 p.Article in journal (Refereed) Published
Abstract [en]

Copper has excellent initial activity for the oxidation of CO, yet it rapidly deactivates under reaction conditions. In an effort to obtain a full picture of the dynamic morphological and chemical changes occurring on the surface of catalysts under CO oxidation conditions, a complementary set of in situ ambient pressure (AP) techniques that include scanning tunneling microscopy, infrared reflection absorption spectroscopy (IRRAS), and X-ray photoelectron spectroscopy were conducted. Herein, we report in situ AP CO oxidation experiments over Cu(111) model catalysts at room temperature. Depending on the CO:O-2 ratio, Cu presents different oxidation states, leading to the coexistence of several phases. During CO oxidation, a redox cycle is observed on the substrate's surface, in which Cu atoms are oxidized and pulled from terraces and step edges and then are reduced and rejoin nearby step edges. IRRAS results confirm the presence of under-coordinated Cu atoms during the reaction. By using control experiments to isolate individual phases, it is shown that the rate for CO oxidation decreases systematically as metallic copper is fully oxidized.

Place, publisher, year, edition, pages
2014. Vol. 118, no 29, 15902-15909 p.
Keyword [en]
Carbon monoxide, Catalysts, Coordination reactions, Copper, Experiments, Redox reactions, Scanning tunneling microscopy, X ray photoelectron spectroscopy, Ambient pressures, Carbon monoxide oxidation, Complementary sets, Control experiments, Infrared reflection absorption spectroscopy, Initial activity, Reaction conditions, Room temperature
National Category
Physical Chemistry
URN: urn:nbn:se:kth:diva-149502DOI: 10.1021/jp5050496ISI: 000339540700038ScopusID: 2-s2.0-84905018241OAI: diva2:740013
Swedish Research Council

QC 20140822

Available from: 2014-08-22 Created: 2014-08-22 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Soldemo, MarkusWeissenrieder, Jonas
By organisation
Material Physics, MF
In the same journal
The Journal of Physical Chemistry C
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 20 hits
ReferencesLink to record
Permanent link

Direct link