Change search
ReferencesLink to record
Permanent link

Direct link
A theoretical assessment of the influence of myosin filament dispersion on smooth muscle contraction
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
2011 (English)In: ASME 2011 Summer Bioengineering Conference, 2011, no PARTS A AND B, 145-146 p.Conference paper (Refereed)
Abstract [en]

A new constitutive model for the biomechanical behavior of smooth muscle tissue is employed to investigate the influence of statistical dispersion in the orientation of myosin filaments. The number of activated cross-bridges between the actin and myosin filaments governs the contractile force generated by the muscle and also the contraction speed. A strain-energy function is used to describe the mechanical behavior of the smooth muscle tissue. The predictions from the constitutive model are compared to histological and isometric tensile test results for smooth muscle tissue from swine carotid artery. In order to be able to predict the active stress at different muscle lengths, a filament dispersion significantly larger than the one observed experimentally was required. Furthermore, a comparison of the predicted active stress for a case of uniaxially oriented myosin filaments and a case of filaments with a dispersion based on the experimental histological data shows that the difference in generated stress is noticeable but limited. Thus, the results suggest that myosin filament dispersion alone cannot explain the increase in active muscle stress with increasing muscle stretch. Copyright © 2011 by ASME.

Place, publisher, year, edition, pages
2011. no PARTS A AND B, 145-146 p.
Keyword [en]
Biomechanical behavior, Contractile force, Histological data, Mechanical behavior, Myosin filaments, Smooth muscle contractions, Statistical dispersion, Strain energy functions, Constitutive models, Dispersions, Proteins, Tensile testing, Muscle
National Category
Medical Biotechnology
URN: urn:nbn:se:kth:diva-148746DOI: 10.1115/SBC2011-53071ScopusID: 2-s2.0-84881228524ISBN: 9780791854587OAI: diva2:740397
ASME 2011 Summer Bioengineering Conference, SBC 2011, 22 June 2011 through 25 June 2011, Farmington, PA

References: Bitar, K.N., Function of gastrointestinal smooth muscle: From signaling to contractile proteins (2003) Am. J. Med., 115, pp. 15S-23S; Herrera, A.M., McParland, B.E., Bienkowska, A., Tait, R., Par, P.D., 'Sarcomeres' of smooth muscle: Functional characteristics and ultrastructural evidence (2005) J. Cell Sci., 118, pp. 2381-2392; Seow, C.Y., Par, P.D., Ultrastructural basis of airway smooth muscle contraction (2007) Can. J. Physiol. Pharmacol, 85, pp. 659-665; Walmsley, J.G., Murphy, R.A., Force-length dependence of arterial lamellar, smooth muscle, and myofilament orientations (1987) Am. J. Physiol. Heart Circ. Physiol., 253, pp. H1141-H1147; Kroon, M., A constitutive model for smooth muscle including active tone and passive viscoelastic behaviour (2010) Math. Med. Biol., 27, pp. 129-155

Available from: 2014-08-25 Created: 2014-08-11 Last updated: 2014-08-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Kroon, Martin
By organisation
Solid Mechanics (Dept.)
Medical Biotechnology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 12 hits
ReferencesLink to record
Permanent link

Direct link