Change search
ReferencesLink to record
Permanent link

Direct link
Mechatronics engineering: New requirements on cross-functional integration
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
2005 (English)Licentiate thesis, comprehensive summary (Other scientific)
Abstract [en]

Several industrial sectors experience an increased reliance on mechatronic systems as electronics and software are being embedded into the traditional mechanical systems of these industries. Important challenges within mechatronics engineering comes from management of multi-disciplinary development project teams and the highly complex scope of problems, which in turn require extensive coordination and integration, both in terms of technical and organisational matters.

The concept of cross-functional integration in product development research has in previous research mainly addressed integration of the functions marketing, R&D, and manufacturing, and whereas the present thesis is delimited to include only the R&D organization and the functions and engineering disciplines within such an organization.

The purpose with thesis has been to investigate mechatronics engineering in order to understand and explain how co-operation, integration, and knowledge sharing between engineering disciplines can be supported.

This research has been realized by empirical studies in mechatronic development settings in engineering companies, but also by taking part in industrial and academic research projects that develop and study computer-aided mechatronics engineering.

Findings presented in this thesis show that mechatronics is a matter of integration at three organizational levels where the most substantial needs are found to be at the team-level and the individual level. Furthermore, it is identified that to be able to succeed in mechatronics engineering, managers and engineers must look beyond disciplinary needs. Subsequently, both teamwork and competence management become key issues for management of mechatronics engineering. Finally, computer-supported and model-based development of mechatronics show great potential for successful integration of engineering disciplines, even though such technological aids are still rather immature and needs further research and development. A tentative analysis model of organizational integration for mechatronics engineering is also presented and discussed in this thesis.

Based on the presented findings, it is concluded that companies incorporating electronics and software in their mechanical products must effectively manage software and electronics development of these embedded systems. Despite the focus on cross-functional integration in engineering companies, this thesis shows examples of inadequate integration of software and electronics engineering with mechanical integration in organisations dominated by the latter.

Future research studies are needed to investigate the relation between factors influencing the need for organizational integration and potential integration mechanisms. To further understand mechatronics engineering it is important to look deeper into research issues such as changed conditions for the engineering profession implied by multidisciplinary settings, social systems supporting integration of disciplines, changed work conditions due to implementation of technological aids for model-based system development, relationship between product and organizational complexity, organizational designs supporting integration of engineering disciplines, and cross-disciplinary training of highly specialized engineers.

Place, publisher, year, edition, pages
Stockholm: KTH , 2005. , 49 p.
Trita-MMK, ISSN 1400-1179 ; 2005:04
Keyword [en]
Mechatronics engineering, product development, multidisciplinary teamwork, organizational integration, cooperation
National Category
Engineering and Technology
URN: urn:nbn:se:kth:diva-152OAI: diva2:7423
2005-03-17, Sal M3, Brinellvägen 6, Stockholm, 07:00
QC 20101123Available from: 2005-03-16 Created: 2005-03-16 Last updated: 2010-11-23Bibliographically approved

Open Access in DiVA

fulltext(2037 kB)6370 downloads
File information
File name FULLTEXT01.pdfFile size 2037 kBChecksum MD5
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Adamsson, Niklas
By organisation
Machine Design (Div.)
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 6370 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 2067 hits
ReferencesLink to record
Permanent link

Direct link