References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt156",{id:"formSmash:upper:j_idt153:j_idt156",widgetVar:"widget_formSmash_upper_j_idt153_j_idt156",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Bayesian Estimation of the von-Mises Fisher Mixture Model with Variational InferencePrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2014 (English)In: IEEE Transaction on Pattern Analysis and Machine Intelligence, ISSN 0162-8828, Vol. 36, no 9, 1701-1715 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2014. Vol. 36, no 9, 1701-1715 p.
##### Keyword [en]

Bayesian estimation, von-Mises Fisher distribution, mixture model, variational inference, directional distribution, predictive density, gene expressions, speaker identification
##### National Category

Computer Science
##### Identifiers

URN: urn:nbn:se:kth:diva-150510DOI: 10.1109/TPAMI.2014.2306426ISI: 000340210100001ScopusID: 2-s2.0-84905593212OAI: oai:DiVA.org:kth-150510DiVA: diva2:747409
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt455",{id:"formSmash:j_idt455",widgetVar:"widget_formSmash_j_idt455",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt461",{id:"formSmash:j_idt461",widgetVar:"widget_formSmash_j_idt461",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt467",{id:"formSmash:j_idt467",widgetVar:"widget_formSmash_j_idt467",multiple:true});
##### Note

##### In thesis

This paper addresses the Bayesian estimation of the von-Mises Fisher (vMF) mixture model with variational inference (VI). The learning task in VI consists of optimization of the variational posterior distribution. However, the exact solution by VI does not lead to an analytically tractable solution due to the evaluation of intractable moments involving functional forms of the Bessel function in their arguments. To derive a closed-form solution, we further lower bound the evidence lower bound where the bound is tight at one point in the parameter distribution. While having the value of the bound guaranteed to increase during maximization, we derive an analytically tractable approximation to the posterior distribution which has the same functional form as the assigned prior distribution. The proposed algorithm requires no iterative numerical calculation in the re-estimation procedure, and it can potentially determine the model complexity and avoid the over-fitting problem associated with conventional approaches based on the expectation maximization. Moreover, we derive an analytically tractable approximation to the predictive density of the Bayesian mixture model of vMF distributions. The performance of the proposed approach is verified by experiments with both synthetic and real data.

QC 20140916

Available from: 2014-09-16 Created: 2014-09-05 Last updated: 2014-10-09Bibliographically approved1. Bayesian Modeling of Directional Data with Acoustic and Other Applications$(function(){PrimeFaces.cw("OverlayPanel","overlay753712",{id:"formSmash:j_idt731:0:j_idt735",widgetVar:"overlay753712",target:"formSmash:j_idt731:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1196",{id:"formSmash:lower:j_idt1196",widgetVar:"widget_formSmash_lower_j_idt1196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1197_j_idt1199",{id:"formSmash:lower:j_idt1197:j_idt1199",widgetVar:"widget_formSmash_lower_j_idt1197_j_idt1199",target:"formSmash:lower:j_idt1197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});