Change search
ReferencesLink to record
Permanent link

Direct link
Differential Axonal Conduction Patterns of Mechano-Sensitive and Mechano-Insensitive Nociceptors - A Combined Experimental and Modelling Study
KTH, School of Computer Science and Communication (CSC), Computational Biology, CB. Stockholm Brain Institute, Stockholm, Sweden.
Show others and affiliations
2014 (English)In: PLoS ONE, ISSN 1932-6203, Vol. 9, no 8, e103556- p.Article in journal (Refereed) Published
Abstract [en]

Cutaneous pain sensations are mediated largely by C-nociceptors consisting of both mechano-sensitive (CM) and mechano-insensitive (CMi) fibres that can be distinguished from one another according to their characteristic axonal properties. In healthy skin and relative to CMi fibres, CM fibres show a higher initial conduction velocity, less activity-dependent conduction velocity slowing, and less prominent post-spike supernormality. However, after sensitization with nerve growth factor, the electrical signature of CMi fibres changes towards a profile similar to that of CM fibres. Here we take a combined experimental and modelling approach to examine the molecular basis of such alterations to the excitation thresholds. Changes in electrical activation thresholds and activity-dependent slowing were examined in vivo using single-fibre recordings of CM and CMi fibres in domestic pigs following NGF application. Using computational modelling, we investigated which axonal mechanisms contribute most to the electrophysiological differences between the fibre classes. Simulations of axonal conduction suggest that the differences between CMi and CM fibres are strongly influenced by the densities of the delayed rectifier potassium channel (Kdr), the voltage-gated sodium channels Na(V)1.7 and Na(V)1.8, and the Na+/K+-ATPase. Specifically, the CM fibre profile required less K-dr and Na(V)1.8 in combination with more Na(V)1.7 and Na+/ K(+)AT-Pase. The difference between CM and CMi fibres is thus likely to reflect a relative rather than an absolute difference in protein expression. In support of this, it was possible to replicate the experimental reduction of the ADS pattern of CMi nociceptors towards a CM-like pattern following intradermal injection of nerve growth factor by decreasing the contribution of Kdr (by 50%), increasing the Na+/K+-ATPase (by 10%), and reducing the branch length from 2 cm to 1 cm. The findings highlight key molecules that potentially contribute to the NGF-induced switch in nociceptors phenotype, in particular NaV1.7 which has already been identified clinically as a principal contributor to chronic pain states such as inherited erythromelalgia.

Place, publisher, year, edition, pages
2014. Vol. 9, no 8, e103556- p.
Keyword [en]
Nerve Growth-Factor, Innervating Human Skin, C-Nociceptors, Sodium-Channels, Fibers, Pain, Neurons, Identification, Excitability, Currents
National Category
Bioinformatics (Computational Biology)
URN: urn:nbn:se:kth:diva-151338DOI: 10.1371/journal.pone.0103556ISI: 000340742100010OAI: diva2:748222
Swedish Research Council, VR 621-2007-4223

QC 20140918

Available from: 2014-09-18 Created: 2014-09-18 Last updated: 2014-09-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Petersson, Marcus E.Fransén, Erik
By organisation
Computational Biology, CB
In the same journal
Bioinformatics (Computational Biology)

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 54 hits
ReferencesLink to record
Permanent link

Direct link