Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Finite subschemes of abelian varieties and the schottky problem
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).
2011 (English)In: Annales de l'Institut Fourier, ISSN 0373-0956, E-ISSN 1777-5310, Vol. 61, no 5, 2039-2064 p.Article in journal (Refereed) Published
Abstract [en]

The Castelnuovo-Schottky theorem of Pareschi-Popa characterizes Jacobians, among indecomposable principally polarized abelian varieties (A, Theta) of dimension g, by the existence of g + 2 points Gamma subset of A in special position with respect to 2 Theta, but general with respect to Theta, and furthermore states that such collections of points must be contained in an Abel-Jacobi curve. Building on the ideas in the original paper, we give here a self contained, scheme theoretic proof of the theorem, extending it to finite, possibly nonreduced subschemes Gamma.

Place, publisher, year, edition, pages
2011. Vol. 61, no 5, 2039-2064 p.
Keyword [en]
Abel-Jacobi curves, Finite schemes, Jacobians, Principally polarized abelian varieties, Schotty problem
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-152127DOI: 10.5802/aif.2665ISI: 000303946500009Scopus ID: 2-s2.0-84858956032OAI: oai:DiVA.org:kth-152127DiVA: diva2:749472
Note

QC 20140924

Available from: 2014-09-24 Created: 2014-09-23 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Gulbrandsen, Martin G.
By organisation
Mathematics (Dept.)
In the same journal
Annales de l'Institut Fourier
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf