Change search
ReferencesLink to record
Permanent link

Direct link
Assessment of the 3D Flow in a Centrifugal compressor using Steady-State and Unsteady Flow Solvers
KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Mechanics of Industrial Processes. (CCGEx – Competence Center for Gas Exchange)
KTH, School of Engineering Sciences (SCI). (FLOW, KTH Mekanik)ORCID iD: 0000-0001-7715-863X
KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Mechanics of Industrial Processes. (CCGEx – Competence Center for Gas Exchange)ORCID iD: 0000-0001-7330-6965
2014 (English)In: SAE Technical Paper, 2014-01-2856, 2014, SAE International , 2014Conference paper (Refereed)
Abstract [en]

Numerical analysis methods are used to investigate the flow in a ported-shroud centrifugal compressor under different operating conditions, i.e. several mass flow rates at two different speed lines. A production turbocharger compressor is considered, which is widely used in the heavy automotive sector. Flow solutions obtained under steady-state and transient flow assumptions are compared with available experimental data.

The steady-state Reynolds Averaged Navier-Stokes method is used to assess the overall time averaged flow and the global performance parameters. Additionally, the Large Eddy Simulation (LES) approach is employed to capture the transient flow features and the developed flow instabilities at low mass flow rates near the surge line.

The aim of this study is to provide new insights on the flow instability phenomena in the compressor flow near surge. Comparison of flow solutions obtained for near-optimal efficiency and near-surge conditions are carried out. The unsteady features of the flow field are quantified by means of Fourier transformation analysis, Proper Orthogonal Decomposition and Dynamic Mode Decomposition. For a near optimal efficiency set-up the frequency spectra are broad- banded with no distinct instabilities. Close to the surge line, the spectra show a distinct surge cycle frequency, which is due to flow pulsation in the compressor.

The modal flow decomposition elucidates a mode occurring at the surge frequency. The mode explains the oscillating pumping effect occurring during surge. The surface spectra contours reveal the shape of the pressure pulsation during surge and support that a pressure gradient occurs with the oscillating modes found with the modal decomposition. 

Place, publisher, year, edition, pages
SAE International , 2014.
, SAE Technical Paper, ISSN 0148-7191
Keyword [en]
Compressor Flow, Turbocharger, Internal Combustion Engine
National Category
Fluid Mechanics and Acoustics
Research subject
Engineering Mechanics
URN: urn:nbn:se:kth:diva-152344DOI: 10.4271/2014-01-2856OAI: diva2:749723
SAE 2014 International Powertrain, Fuels & Lubricants Meeting,October 20-23, 2014,Birmingham, UK
Swedish Energy Agency

QC 20141106

Available from: 2014-09-25 Created: 2014-09-25 Last updated: 2015-03-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPublished paper at SAE International

Search in DiVA

By author/editor
Sundström, EliasSemlitsch, BernhardMihaescu, Mihai
By organisation
Fluid Mechanics of Industrial ProcessesSchool of Engineering Sciences (SCI)
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 60 hits
ReferencesLink to record
Permanent link

Direct link