Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exponential squared integrability of the discrepancy function in two dimensions
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).
2009 (English)In: Mathematika, ISSN 0025-5793, E-ISSN 2041-7942, Vol. 55, no 1-2, 1-27 p.Article in journal (Refereed) Published
Abstract [en]

Let AN be an N-point set in the unit square and consider the discrepancy function DN(x):= #(AN ∩ [0, x)) - N|(0, x)|, where x = (x1, X2) ∈ [0, 1]2, [0, x) = Πt=1 2[0, xt), and |[0, x)| denotes the Lebesgue measure of the rectangle. We give various refinements of a well-known result of Schmidt [Irregularities of distribution. VII. Acta Arith. 21 (1972), 45-50] on the L∞ norm of DN. We show that necessarily ||DN||exp(L α) ≳ (log N)1-1/α, 2 ≤ α < ∞. The case of α = ∞ is the Theorem of Schmidt. This estimate is sharp. For the digit-scrambled van der Corput sequence, we have ||DN|| exp(L α) ≳ (log N)1-1/α, 2 ≤ α < ∞., whenever N = 2n for some positive integer n. This estimate depends upon variants of the Chang-Wilson - Wolff inequality [S.-Y. A. Chang, J. M. Wilson and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators. Comment. Math. Helv. 60(2) (1985), 217-246]. We also provide similar estimates for the BMO norm of DN.

Place, publisher, year, edition, pages
2009. Vol. 55, no 1-2, 1-27 p.
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-152798Scopus ID: 2-s2.0-74049140472OAI: oai:DiVA.org:kth-152798DiVA: diva2:751484
Note

QC 20141001

Available from: 2014-10-01 Created: 2014-10-01 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Scopus

Search in DiVA

By author/editor
Parissis, Ioannis
By organisation
Mathematics (Dept.)
In the same journal
Mathematika
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 33 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf