Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Framework for Integrated Energy Systems, Infrastructure, and Services Optimization with Visualization and Simulation Platform for Low-carbon Precincts
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Service and Energy Systems.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Service and Energy Systems.
University of Melbourne.
2013 (English)In: Proceedings of the International Symposium for Next Generation Infrastructure, 1 - 3 October 2013, 2013Conference paper, Published paper (Refereed)
Abstract [en]

The energy informatics can be enhanced to support decision-making, communication and benchmarking of the energy performance both in design and operational phases. To enable engineers, developers and policy-makers to better understand the implications of energy systems and services, computer-generated visualization is a powerful tool to inform a range of technological options and to analyze the effects of energy system strategies. Visualization increases the transparency of results and the understanding of interactions between users and energy systems. This paper presents a novel conceptual framework for integrating energy systems, infrastructure and services optimization with a visualization and simulation platform. It focuses on the development of a tool for low-carbon energy systems and high quality energy services at precinct scale. The paper describes the vision and architectural design for the integrated framework. It is expected to serve as a next generation approach to managing energy services, carbon emissions and efficient resource use in the built environment. This will help to deliver new environmentally sustainable infrastructure and achieve carbon neutrality in urban development.

Place, publisher, year, edition, pages
2013.
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:kth:diva-152897DOI: 10.14453/isngi2013.proc.37OAI: oai:DiVA.org:kth-152897DiVA: diva2:751930
Conference
International Symposium for Next Generation Infrastructure, wollongong, australia, October 1-3, 2013
Note

QC 20150205

Available from: 2014-10-02 Created: 2014-10-02 Last updated: 2015-11-10Bibliographically approved
In thesis
1. Modeling urban energy flows at macro and district levels: towards a sustainable urban metabolism
Open this publication in new window or tab >>Modeling urban energy flows at macro and district levels: towards a sustainable urban metabolism
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The urban sustainability is a growing importance in the built environment research. Urban areas play a key role in planning for sustainable city development. Urbanization has implications for future energy systems and energy-related emissions. The new built environment requires systems that are cost-efficient and have more efficient utilization of energy with a low environmental impact. This can be analyzed and designed with efficient tools for current and future energy systems. The objectives of this dissertation are to examine and analyze the metabolic flows of urban areas, and to develop a methodology for optimization of energy systems and services for the urban district. The dissertation is comprised of two phases and eight appended publications.

In the first phase of this dissertation, the research is emphasized on an in-depth understanding of the complex dynamics of energy utilization in large urban areas. An integrated approach applied in this phase includes the energetic urban metabolism, the long-term energy systems modeling using the Long-range Energy Alternative Planning (LEAP) system, and the Multi-Criteria Decision-Making (MCDM) approach. The urban metabolism approach has been employed to analyze the urban energy flows at macro level. The LEAP model and MCDM approach have been used to develop and evaluate energy scenarios in both demand and supply sides.

In the second phase, the research recognizes the lack of tools that applicable for district energy systems analysis. This phase concentrates on the important role of the district level in urban energy systems. Research methods include the Multi-Objective Optimization using Genetic Algorithms, the carbon budget approach, and the case study method. Research in the second phase is mainly focused on the development of tool for energy systems and services at the district level.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. 86 p.
Series
TRITA-IES, 2015:07
National Category
Building Technologies
Identifiers
urn:nbn:se:kth:diva-176828 (URN)978-91-7595-794-4 (ISBN)
Public defence
2015-11-30, Sal F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20151110

Available from: 2015-11-10 Created: 2015-11-10 Last updated: 2015-11-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Pdungsilp, AumnadMartinac, Ivo
By organisation
Building Service and Energy Systems
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 52 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf