Change search
ReferencesLink to record
Permanent link

Direct link
An Extension of Clarke's Model With Stochastic Amplitude Flip Processes
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA. Division of Mathematics, King Abdullah University of Science and Technology, Saudi Arabia .
2014 (English)In: IEEE Transactions on Communications, ISSN 0090-6778, E-ISSN 1558-0857, Vol. 62, no 7, 2378-2389 p.Article in journal (Refereed) Published
Abstract [en]

Stochastic modeling is an essential tool for studying statistical properties of wireless channels. In multipath fading channel (MFC) models, the signal reception is modeled by a sum of wave path contributions, and Clarke's model is an important example of such which has been widely accepted in many wireless applications. However, since Clarke's model is temporally deterministic, Feng and Field noted that it does not model real wireless channels with time-varying randomness well. Here, we extend Clarke's model to a novel time-varying stochastic MFC model with scatterers randomly flipping on and off. Statistical properties of the MFC model are analyzed and shown to fit well with real signal measurements, and a limit Gaussian process is derived from the model when the number of active wave paths tends to infinity. A second focus of this work is a comparison study of the error and computational cost of generating signal realizations from the MFC model and from its limit Gaussian process. By rigorous analysis and numerical studies, we show that in many settings, signal realizations are generated more efficiently by Gaussian process algorithms than by the MFC model's algorithm. Numerical examples that strengthen these observations are also presented.

Place, publisher, year, edition, pages
2014. Vol. 62, no 7, 2378-2389 p.
Keyword [en]
Multipath channels, Gaussian processes, ray tracing
National Category
URN: urn:nbn:se:kth:diva-153283DOI: 10.1109/TCOMM.2014.2328595ISI: 000341571000019ScopusID: 2-s2.0-84904821817OAI: diva2:752651

QC 20141006

Available from: 2014-10-06 Created: 2014-10-03 Last updated: 2014-10-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hoel, Hakon
By organisation
Numerical Analysis, NA
In the same journal
IEEE Transactions on Communications

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 25 hits
ReferencesLink to record
Permanent link

Direct link