Change search
ReferencesLink to record
Permanent link

Direct link
Image matching using generalized scale-space interest points
KTH, School of Computer Science and Communication (CSC), Computational Biology, CB.ORCID iD: 0000-0002-9081-2170
2015 (English)In: Journal of Mathematical Imaging and Vision, ISSN 0924-9907, E-ISSN 1573-7683, Vol. 52, no 1, 3-36 p.Article in journal (Refereed) Published
Abstract [en]

The performance of matching and object recognition methods based on interest points depends on both the properties of the underlying interest points and the choice of associated image descriptors. This paper demonstrates advantages of using generalized scale-space interest point detectors in this context for selecting a sparse set of points for computing image descriptors for image-based matching.

For detecting interest points at any given scale, we make use of the Laplacian, the determinant of the Hessian and four new unsigned or signed Hessian feature strength measures, which are defined by generalizing the definitions of the Harris and Shi-and-Tomasi operators from the second moment matrix to the Hessian matrix. Then, feature selection over different scales is performed either by scale selection from local extrema over scale of scale-normalized derivates or by linking features over scale into feature trajectories and computing a significance measure from an integrated measure of normalized feature strength over scale.

A theoretical analysis is presented of the robustness of the differential entities underlying these interest points under image deformations, in terms of invariance properties under affine image deformations or approximations thereof. Disregarding the effect of the rotationally symmetric scale-space smoothing operation, the determinant of the Hessian is a truly affine covariant differential entity and two of the new Hessian feature strength measures have a major contribution from the affine covariant determinant of the Hessian, implying that local extrema of these differential entities will bemore robust under affine image deformations than local extrema of the Laplacian operator or the two other new Hessian feature strength measures.

It is shown how these generalized scale-space interest points allow for a higher ratio of correct matches and a lower ratio of false matches compared to previously known interest point detectors within the same class. The best results are obtained using interest points computed with scale linking and with the new Hessian feature strength measures and the determinant of the Hessian being the differential entities that lead to the best matching performance under perspective image transformations with significant foreshortening, and better than the more commonly used Laplacian operator, its difference-of-Gaussians approximation or the Harris-Laplace operator.

We propose that these generalized scale-space interest points, when accompanied by associated local scale-invariant image descriptors, should allow for better performance of interest point based methods for image-based matching, object recognition and related visual tasks.

Place, publisher, year, edition, pages
Springer Berlin/Heidelberg, 2015. Vol. 52, no 1, 3-36 p.
Keyword [en]
Feature detection, Interest point, Blob detection, Corner detection, Scale, Scale selection, Scale linking, Feature trajectory, Matching, Object recognition, Scale invariance, Affine invariance, Differential invariant, Image descriptor, Scale space, Computer vision
National Category
Computer Vision and Robotics (Autonomous Systems)
URN: urn:nbn:se:kth:diva-153640DOI: 10.1007/s10851-014-0541-0ISI: 000353205200002ScopusID: 2-s2.0-84908123725OAI: diva2:752787
Special issue with selected papers from SSVM 2013: Scale-Space and Variational Methods in Computer Vision
Swedish Research Council, 2010-4766The Royal Swedish Academy of SciencesKnut and Alice Wallenberg Foundation

QC 20141218

Available from: 2014-10-06 Created: 2014-10-06 Last updated: 2015-08-05Bibliographically approved

Open Access in DiVA

fulltext(11665 kB)85 downloads
File information
File name FULLTEXT01.pdfFile size 11665 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusJournal of Mathematical Imaging and VisionFulltext at author's home page

Search in DiVA

By author/editor
Lindeberg, Tony
By organisation
Computational Biology, CB
In the same journal
Journal of Mathematical Imaging and Vision
Computer Vision and Robotics (Autonomous Systems)

Search outside of DiVA

GoogleGoogle Scholar
Total: 85 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 1747 hits
ReferencesLink to record
Permanent link

Direct link